13 research outputs found

    Discord and quantum computational resources

    Full text link
    Discordant states appear in a large number of quantum phenomena and seem to be a good indicator of divergence from classicality. While there is evidence that they are essential for a quantum algorithm to have an advantage over a classical one, their precise role is unclear. We examine the role of discord in quantum algorithms using the paradigmatic framework of `restricted distributed quantum gates' and show that manipulating discordant states using local operations has an associated cost in terms of entanglement and communication resources. Changing discord reduces the total correlations and reversible operations on discordant states usually require non-local resources. Discord alone is, however, not enough to determine the need for entanglement. A more general type of similar quantities, which we call K-discord, is introduced as a further constraint on the kinds of operations that can be performed without entanglement resources.Comment: Closer to published versio

    Vanishing quantum discord is not necessary for completely-positive maps

    Full text link
    The description of the dynamics of a system that may be correlated with its environment is only meaningful within the context of a specific framework. Different frameworks rely upon different assumptions about the initial system-environment state. We reexamine the connections between complete-positivity and quantum discord within two different sets of assumptions about the relevant family of initial states. We present an example of a system-environment state with non-vanishing quantum discord that leads to a completely-positive map. This invalidates an earlier claim on the necessity of vanishing quantum discord for completely-positive maps. In our final remarks we discuss the physical validity of each approach.Comment: close to published versio

    Quantum discord and local demons

    Full text link
    Quantum discord was proposed as a measure of the "quantumness" of correlations. There are at least three different discord-like quantities, two of which determine the difference between the efficiencies of a Szilard's engine under different sets of restrictions. The three discord measures vanish simulataneosly. We introduce an easy way to test for zero discord, relate it to the Cerf-Adami conditional entropy and show that there is no relation between the discord and the local disitnguishability.Comment: 7 pages, RevTeX. Some minor changes after comments from colleagues, some references added. Similar to published versio

    Entanglement, discord and the power of quantum computation

    Full text link
    We show that the ability to create entanglement is necessary for execution of bipartite quantum gates even when they are applied to unentangled states and create no entanglement. Starting with a simple example we demonstrate that to execute such a gate bi-locally the local operations and classical communications (LOCC) should be supplemented by shared entanglement. Our results point to the changes in quantum discord, which is a measure of quantumness of correlations even in the absence of entanglement, as the indicator of failure of a LOCC implementation of the gates.Comment: Published version. More results are adde

    The classical-quantum boundary for correlations: discord and related measures

    Full text link
    One of the best signatures of nonclassicality in a quantum system is the existence of correlations that have no classical counterpart. Different methods for quantifying the quantum and classical parts of correlations are amongst the more actively-studied topics of quantum information theory over the past decade. Entanglement is the most prominent of these correlations, but in many cases unentangled states exhibit nonclassical behavior too. Thus distinguishing quantum correlations other than entanglement provides a better division between the quantum and classical worlds, especially when considering mixed states. Here we review different notions of classical and quantum correlations quantified by quantum discord and other related measures. In the first half, we review the mathematical properties of the measures of quantum correlations, relate them to each other, and discuss the classical-quantum division that is common among them. In the second half, we show that the measures identify and quantify the deviation from classicality in various quantum-information-processing tasks, quantum thermodynamics, open-system dynamics, and many-body physics. We show that in many cases quantum correlations indicate an advantage of quantum methods over classical ones.Comment: Close to the published versio

    Experimental Demonstration of Quantum Fully Homomorphic Encryption with Application in a Two-Party Secure Protocol

    Get PDF
    A fully homomorphic encryption system hides data from unauthorized parties while still allowing them to perform computations on the encrypted data. Aside from the straightforward benefit of allowing users to delegate computations to a more powerful server without revealing their inputs, a fully homomorphic cryptosystem can be used as a building block in the construction of a number of crypt

    Experimental demonstration of quantum fully homomorphic encryption with application in a two-party secure protocol

    Get PDF
    A fully homomorphic encryption system hides data from unauthorized parties, while still allowing them to perform computations on the encrypted data. Aside from the straightforward benefit of allowing users to delegate computations to a more powerful server without revealing their inputs, a fully homomorphic cryptosystem can be used as a building block in the construction of a number of cryptographic functionalities. Designing such a scheme remained an open problem until 2009, decades after the idea was first conceived, and the past few years have seen the generalization of this functionality to the world of quantum machines. Quantum schemes prior to the one implemented here were able to replicate some features in particular use-cases often associated with homomorphic encryption but lacked other crucial properties, for example, relying on continual interaction to perform a computation or leaking information about the encrypted data. We present the first experimental realisation of a quantum fully homomorphic encryption scheme. We further present a toy two-party secure computation task enabled by our scheme. Finally, as part of our implementation, we also demonstrate a post-selective two-qubit linear optical controlled-phase gate with a much higher post-selection success probability (1/2) when compared to alternate implementations, e.g. with post-selective controlled-Z or controlled-X gates (1/9).</p

    Nonlocal Measurements via Quantum Erasure

    No full text
    corecore