10 research outputs found

    Connecticut State University System Initiative for Nanotechnology-Related Equipment, Faculty Development and Curriculum Development

    No full text
    DOE grant used for partial fulfillment of necessary laboratory equipment for course enrichment and new graduate programs in nanotechnology at the four institutions of the Connecticut State University System (CSUS). Equipment in this initial phase included variable pressure scanning electron microscope with energy dispersive x-ray spectroscopy elemental analysis capability [at Southern Connecticut State University]; power x-ray diffractometer [at Central Connecticut State University]; a spectrophotometer and spectrofluorimeter [at Eastern Connecticut State University; and a Raman Spectrometer [at Western Connecticut State University]. DOE's funding was allocated for purchase and installation of this scientific equipment and instrumentation. Subsequently, DOE funding was allocated to fund the curriculum, faculty development and travel necessary to continue development and implementation of the System's Graduate Certificate in Nanotechnology (GCNT) program and the ConnSCU Nanotechnology Center (ConnSCU-NC) at Southern Connecticut State University. All of the established outcomes have been successfully achieved. The courses and structure of the GCNT program have been determined and the program will be completely implemented in the fall of 2013. The instrumentation has been purchased, installed and has been utilized at each campus for the implementation of the nanotechnology courses, CSUS GCNT and the ConnSCU-NC. Additional outcomes for this grant include curriculum development for non-majors as well as faculty and student research

    Waste Citrus reticulata Assisted Preparation of Cobalt Oxide Nanoparticles for Supercapacitors

    No full text
    The green, sustainable, and inexpensive creation of novel materials, primarily nanoparticles, with effective energy-storing properties, is key to addressing both the rising demand for energy storage and the mounting environmental concerns throughout the world. Here, an orange peel extract is used to make cobalt oxide nanoparticles from cobalt nitrate hexahydrate. The orange peel extract has Citrus reticulata, which is a key biological component that acts as a ligand and a reducing agent during the formation of nanoparticles. Additionally, the same nanoparticles were also obtained from various precursors for phase and electrochemical behavior comparisons. The prepared Co-nanoparticles were also sulfurized and phosphorized to enhance the electrochemical properties. The synthesized samples were characterized using scanning electron microscopic and X-ray diffraction techniques. The cobalt oxide nanoparticle showed a specific capacitance of 90 F/g at 1 A/g, whereas the cobalt sulfide and phosphide samples delivered an improved specific capacitance of 98 F/g and 185 F/g at 1 A/g. The phosphide-based nanoparticles offer more than 85% capacitance retention after 5000 cycles. This study offers a green strategy to prepare nanostructured materials for energy applications

    Studies of reduced graphene oxide (rGO)/CuS nanocomposite for supercapacitor applications

    No full text
    We have prepared CuS and CuS-rGO nanocomposites via the hydrothermal method. The physical properties of the synthesized materials were studied through x-ray diffraction and scanning electron microscopy. The supercapacitor characteristics were evaluated by cyclic voltammetric and galvanostatic charge–discharge studies. The cyclic voltammetric studies conform the pseudocapacitive nature of CuS and CuS-rGO electrodes. The specific capacitance of CuS was obtained as 207, 150, and 97 F/g at a current density of 0.5, 5, and 20 A/g, respectively. The rGO-CuS nanocomposite showed improved specific capacitance of 350, 251, and 149 F/g at current densities of 0.5, 5, and 20 A/g, respectively
    corecore