9,238 research outputs found
Dynamics of deviations from the Gaussian state in a freely cooling homogeneous system of smooth inelastic particles
The time dependence of deviations from the Gaussian state in a freely cooling
homogeneous system of smooth inelastically colliding spheres is investigated by
kinetic theory. We determine the full time dependence of the coefficients of an
expansion around the Gaussian state in Generalized Laguerre polynomials.
Approximating this system of equations to sixth order, we find that the
asymptotic state, where the mean energy T follows Haff's law with time
independent cooling rate, is reached within a few collisions per particle.
Two-dimensional molecular dynamics simulations confirm our results and show
exponential behavior in the high-energy tails.Comment: 11 pages, 13 eps figures, to be published in Granular Matte
Symmetry-preserving contact interaction model for heavy-light mesons
We use a symmetry-preserving regularization method of ultraviolet divergences
in a vector-vector contact interac- tion model for low-energy QCD. The contact
interaction is a representation of nonperturbative kernels used Dyson-Schwinger
and Bethe-Salpeter equations. The regularization method is based on a
subtraction scheme that avoids standard steps in the evaluation of divergent
integrals that invariably lead to symmetry violation. Aiming at the study of
heavy-light mesons, we have implemented the method to the pseudoscalar pion and
Kaon mesons. We have solved the Dyson-Schwinger equation for the u, d and s
quark propagators, and obtained the bound-state Bethe-Salpeter amplitudes in a
way that the Ward-Green-Takahashi identities reflecting global symmetries of
the model are satisfied for arbitrary routing of the momenta running in loop
integrals
On the dependence of the avalanche angle on the granular layer thickness
A layer of sand of thickness h flows down a rough surface if the inclination
is larger than some threshold value theta which decreases with h. A tentative
microscopic model for the dependence of theta with h is proposed for rigid
frictional grains, based on the following hypothesis: (i) a horizontal layer of
sand has some coordination z larger than a critical value z_c where mechanical
stability is lost (ii) as the tilt angle is increased, the configurations
visited present a growing proportion $_s of sliding contacts. Instability with
respect to flow occurs when z-z_s=z_c. This criterion leads to a prediction for
theta(h) in good agreement with empirical observations.Comment: 6 pages, 2 figure
Electron pairing: from metastable electron pair to bipolaron
Starting from the shell structure in atoms and the significant correlation
within electron pairs, we distinguish the exchange-correlation effects between
two electrons of opposite spins occupying the same orbital from the average
correlation among many electrons in a crystal. In the periodic potential of the
crystal with lattice constant larger than the effective Bohr radius of the
valence electrons, these correlated electron pairs can form a metastable energy
band above the corresponding single-electron band separated by an energy gap.
In order to determine if these metastable electron pairs can be stabilized, we
calculate the many-electron exchange-correlation renormalization and the
polaron correction to the two-band system with single electrons and electron
pairs. We find that the electron-phonon interaction is essential to
counterbalance the Coulomb repulsion and to stabilize the electron pairs. The
interplay of the electron-electron and electron-phonon interactions, manifested
in the exchange-correlation energies, polaron effects, and screening, is
responsible for the formation of electron pairs (bipolarons) that are located
on the Fermi surface of the single-electron band.Comment: 17 pages, 6 figures, Journal of Physics Communications 201
- …