25 research outputs found

    Textiel: Materiaal in functie

    No full text
    Op 22 mei 2007 is ir. Ger Brinks bij Saxion in Enschede geïnstalleerd als lector Smart Functional Materials. Als lector richt Ger Brinks zich op de ontwikkeling en vermarkting van hoogwaardig textiel. Zijn lectoraat richt zich ook op onderzoek naar de voorwaarden voor innovaties in functionele materialen. Daarbij werkt het lectoraat intensief samen met vooraanstaande kennisinstellingen. Dit boekje bevat de tekst van de lectorale rede van Ger Brinks. Bedrijven in de textielsector bevinden zich vaak in een spagaat: enerzijds staan ze voor de uitdaging om zich (verder) te richten op hoogwaardige technologie en designs, anderzijds moeten ze kostenbewust opereren, wat vaak leidt tot uitbesteding en inkoop van textiel in ontwikkelingslanden. Textielbedrijven kunnen zich onderscheiden door kennis, innovatie en creativiteit toe te passen in de ontwikkeling van hun producten. Het leggen van de verbinding tussen creativiteit, techniek en businessmodellen is de kern van succesvol en onderscheidend ondernemen, waarbij functionaliteit hét sleutelbegrip is. Deze driehoek is de kern van het onderwijs waarbij textiel niet alleen spannend is, maar ook maakbaar moet zijn en vermarktbaar onder economisch rendabele condities met minimale milieu-impact. Het lectoraat speelt in op de erkenning van het belang van kennis en creativiteit van deze branche voor de Nederlandse economie en het grote belang van materiaaltechnologie

    Textiel en duurzaamheid: De noodzaak van ketentransformatie

    No full text
    Grondstoffen schaarste is een van de grootste uitdagingen voor de textielindustrie. Dit wordt veroorzaakt door afnemende of beperkte voorraden grondstoffen, olie, water en land terwijl de vraag toeneemt o.a. door toenemende welvaart en industriële activiteit zoals bijv. in China en India. Dit is een wereldwijd verschijnsel en het leidt tot meer onderlinge afhankelijkheden tussen landen en regio’s.Er zullen dan ook maatregelen genomen moeten worden om hier een goed antwoord op te vinden en de volgende actielijnen moeten in gang worden gezet: Betere/meer efficiënt productie- en distributie keten Efficiëntere productiesystemen zoals digitale processen Beperking van grondstoffengebruik en recycling van materialen Vervangen van traditionele grondstoffen door nieuwe minder belastende materialen. Aanpassen van het ontwerp proces, rekening houdend met recycling en gerecyclede materialen. De problemen van de industriële textielketen en de impact ervan op het milieu worden niet alleen veroorzaakt door inefficiënte en vervuilende processen maar ook door een zeer ondermaatse order- en productieketen. Duurzaamheid is allang het stadium van trend ontgroeid. Het is een keiharde noodzaak geworden om op onze begrensde aarde te overleven. De focus ligt dan ook op het belang voor de toekomstige generaties. Echter in de driehoek People – Planet – Profit (door sommigen ook ingevuld als Prosperity) is het van groot belang om te optimaliseren binnen deze driehoek. Zonder het aspect profit mee te wegen gebeurt er niets. Recycling is een belangrijk thema om bovengenoemde problemen aan te pakken. Al tijdens het ontwerp van producten kan al rekening gehouden worden met recycling. Door materiaalkeuze kan verlenging van de levens- of gebruiksduur verkregen worden, bijv. door minder slijtage of sterkere materialen te gebruiken. Dit is een reële optie. Doel is dan om al tijdens het ontwerp van textiele producten, incl. de aan te brengen functies en gebruik een product zodanig vormgeven dat hergebruik een goede optie is.   Biopolymeren zijn materialen met een natuurlijke herkomst en zijn al in gebruik sinds mensenheugenis. Vooral in de textielindustrie is het gebruik van biomaterialen natuurlijk allang gemeengoed, denk aan katoen, wol, zijde maar ook aan geregenereerde cellulose als bijv. Lyocell. Het gebruik van biopolymeren in de textielindustrie verlaagt de druk op schaarse. Op olie gebaseerde synthetische materialen, of kostbare grondstoffen. Aantoonbaar duurzaam vereist onderbouwing door rationele analyse om greenwashing tegen te gaan.Duurzaam vereist ook een keten benadering: de gehele keten speelt hierin mee dus ook de textielproducenten. Hiervoor is het nodig om een analyse te maken van de inzet van huidige materialen en te onderzoeken op welke wijze die vervangen kunnen worden door biobased materialen. Digitaliseren van de textielketen lijktook een methode om de duurzaamheid van de keten te verbeteren. Made-to-measure en individualisatie zijn belangrijke drivers voor de digitalisering van de textielketen. Goedkope bodyscanners en de beschikbaarheid van goede digitale printers zijn belangrijke enablers, waardoor de traditionele textielindustrie in de komende jaren een belangrijke transformatie zal ondergaan.De technologische doorbraken die hierachter zitten worden gedreven door de opkomende vraag naar mass customization en de noodzaak van ecologisch vriendelijke processen.Dat betekent dus een productiesysteem waarin alle nog noodzakelijke unit operations aan elkaar gekoppeld zijn tot een samenhangend geheel: de “factory of the future”. Traditioneel was het doek de verbindende schakel tussen de verschillende stappen. In de nieuwe situatie is digitale informatie en input/output variabelen. Uit het voorgaande kan geconcludeerd worden dat er enorm geïnvesteerd moet

    Biokatalytische voorbehandelingsprocessen van katoen: Industriële toepassing van academisch onderzoek

    No full text
    Research inspanningen gedurende de laatste decennia hebben geleid tot de introductie van een bio-katalytisch voorbehandelingproces voor katoen. In afwijking tot de gangbare procescondities, die leiden tot een hoog water- en energieverbruik, is voor het nieuwe proces een substantiële reductie van de milieubelasting gerealiseerd. Basis van het nieuwe proces is de inzet van enzymen in de processtappen ontsterken en afkoken. Naast de reeds genoemde besparingen op het gebied van water en energie wordt tevens een reductie van bijna 40% gerealiseerd van de vuillast van het afvalwater. De besparingen zijn vastgesteld tijdens de industriële experimenten bij het finishbedrijf Satta e Bottelli in Italië (Bouwhuis, 2011)

    The added value of 3D polymer deposition on textiles

    No full text
    The working hypothesis for this research project is that it is possible to develop a new functional polymer printing process for the direct application of conductive polymer onto textiles. We will use the basic extrusion technology that is currently applied in 3D printing. Thus the aim is also expanding the knowledge and knowhow base of 3D printing and make this technology applicable for deposition of functional polymers on textiles in such a way that process parameters are clearly understood, and pre-defined final product specifications can be met. Thus the challenge is to apply conductive tracks with a simple one step process that fits the current textile production processes. This means that investigating polymer deposition onto textiles of bio based polymers like PLA, doped with carbon could be a versatile route to achieving economic and sustainable conducting textiles. If the mechanism underlying the bonding of doped PLA with textiles can be controlled for processing then a new route to achieving conductive grids would be opened.Paper written by the Saxion chair Smart Functional Materials and The Unversity of Twente for and accepted by the Autex Conference 2013 (22-24 May 2013, Dresden, Germany)

    Naar een textielindustrie zonder water?: Van natte verdeling naar droge en energie-efficiënte processen

    No full text
    In de textielindustrie wordt veel water gebruikt.Tijdens vrijwel alle veredelingsprocessen speel water een rol. In het Europese samenwerkingsverband 'The Textile flagships: TFE 2, from wet to dry ' wordt hierover nagedacht. De belangrijkste doelstelling is de textielindustrie in staat te stellen om onnodig gebruik van water, energie, chemicaliën te voorkomen en afval te beperken. Daarover gaat dit artikel, gepubliceerd in Texpress, april 2014

    Textiel en duurzaamheid: De noodzaak van ketentransformatie

    No full text
    Artikel van Ger Brinks en Anton Luiken van het Saxion-lectoraat Smart Functional Materials. Grondstoffenschaarste is een van de grootste uitdagingen voor de textielindustrie. Dit wordt veroorzaakt door afnemende of beperkte voorraden grondstoffen, olie, water en land terwijl de vraag toeneemt o.a. door toenemende welvaart en industriële activiteit zoals bijv. in China en India. Dit is een wereldwijd verschijnsel en het leidt tot meer onderlinge afhankelijkheden tussen landen en regio’s. Er zullen dan ook maatregelen genomen moeten worden om hier een goed antwoord op te vinden en de volgende actielijnen moeten in gang worden gezet: 1. Betere/meer efficiënt productie- en distributieketen2. Efficiëntere productiesystemen zoals digitale processen. 3. Beperking van grondstoffengebruik en recycling van materialen. 4. Vervangen van traditionele grondstoffen door nieuwe minder belastende materialen. 5. Aanpassen van het ontwerp proces, rekening houdend met recycling en gerecyclede materialen. De problemen van de industriële textielketen en de impact ervan op het milieu worden niet alleen veroorzaakt door inefficiënte en vervuilende processen maar ook door een zeer ondermaatse order- en productieketen. Duurzaamheid is allang het stadium van trend ontgroeid. Het is een keiharde noodzaak geworden om op onze begrensde aarde te overleven. De focus ligt dan ook op het belang voor de toekomstige generaties. Echter in de driehoek People – Planet – Profit (door sommigen ook ingevuld als Prosperity) is het van groot belang om te optimaliseren binnen deze driehoek. Zonder het aspect profit mee te wegen gebeurt er niets. Recycling is een belangrijk thema om bovengenoemde problemen aan te pakken. Al tijdens het ontwerp van producten kan al rekening gehouden worden met recycling. Door materiaalkeuze kan verlenging van de levens- of gebruiksduur verkregen worden, bijv. door minder slijtage of sterkere materialen te gebruiken. Dit is een reële optie. Doel is dan om al tijdens het ontwerp van textiele producten, incl. de aan te brengen functies en gebruik een product zodanig vormgeven dat hergebruik een goede optie is. Textiel en duurzaamheid zijn sterk met elkaar verweven. Veel onderzoek heeft al allerlei initiatieven en zakelijke activiteiten opgeleverd en er is nog veel meer onderzoek gaande. Uitgaande van de duurzaamheidagenda van textiel kunnen we stellen dat een zakelijk interessante textiel industrie tot de kansen behoort voor de BV Nederland. Dit artikel is geschreven voor en opgenomen in het Jaarboek Textiel 2011

    A comparative study of the implementation methods of heating elements used for the development of textile heaters

    No full text
    The focus of this paper is to make a comparison between five different types of conductive, heatable samples. These samples have been produced according to the five most important implementation techniques developed so far, which are knitting, weaving, embroidery, printing and nonwoven padding  –and their purpose is to help decide which conductive option best accommodates a heating application. This study was divided into four major steps: choosing the adequate materials, swatch production, conductivity measurements and heating behaviour assessment. The first three methods use electro conductive wires as heating elements, the fourth uses conductive ink and the fifth uses carbon black coating. For all of them, resistance, current and heat distribution was measured. The results show that the best options for the development of a wearable textile heating system are the printed and the knitted techniques, as their mechanical strength and elasticity, is sufficiently high and the fabric/substrate structure allows the insertion/deposition of different types of heating elements. Paper from the Saxion Research Centre for Design and Technology for het 12th World Textile Conference AUTEX, June 13th-15th 2012, Zadar, Croatia

    Analysis of parallel collaboration assignments in smart textile design

    No full text
    Many interesting smart textile concepts have been developed, however there are only a few relevant examples of concepts that are producible and valuable for our society. The so-called ‘killer application’ has not been found yet. That is why it is extremely important that multi-disciplinary parties team-up during the ideation process to come up with innovative solutions (Toeters, 2007). The goal of STS CRISP (Crisp, 2011) is to integrate existing knowledge from partners in the separate domains of textile (soft materials), technology and service providers. To investigate the different kinds of expertise necessary for the development of Smart Textile Services we initiated an assignment to develop new Smart Textile Services concepts for elderly that can be used during rehabilitation (ten Bhömer, Tomico, Kleinsmann, Kuusk & Wensveen, 2012) and executed this project in 2 different institutes: Saxion University of Applied Sciences and Eindhoven University of Technology (TU/e). Through some pre-set contact moments, the use of a gatekeeper (Vertooren, 2007) active in both institutes, and analyzing the final reports we are able to acquire an insight in the different approaches and focus preferences of the institutes. The analysis lead to the following observations: 1. Saxion students spend more time researching existing technologies and how to implement them in their concepts. A more theoretical approach from what is already there, applying existing materials and opportunities that are already there. 2. The TU/e students consistently focused on on user research to find out their perspectives. More user-centered. 3. Saxion students start with ideation and validate this by analyzing what is available in the market at the beginning of the process. 4. TU/e students work from a societal perspective towards user focus and an idea. TU/e students found out that there is a lot more steps after prototyping. Saxion takes the next step: where TU/e students stop, they continue. Out of these observations we can conclude that the institutes are active on different levels on the time-to-market line. We have to take into account that every collaborator has a different time-to-market horizon. For the STS CRISP consortium this means that efforts have to be made to define the time-to-market expertise of the partners. As a next step, we will continue to explore this concept of parallel collaboration assignments and start a new collaboration assignment in sequence in different institutes. Test the time-to-market approach and gather strategies to create a more in depth approach to relevant marketable products can speed up the process of bringing concepts to the market, so that it can have a true added value for society

    Biopolymeren in geotextiel

    No full text
    De overgang van traditionele textiel naar biotextiel kan omschreven worden als een paradigmaverandering, in grote lijnen parallel aan de komst van biotechnologie. Dit wordt vaak geassocieerd met begrippen als creatieve destructie, waarbij nieuwe innovatieve industrieën de bestaande achterhaald doen raken. Maar biopolymeren zijn er altijd al geweest. Wat opvalt, is hier niet het radicale van de verandering, maar de mogelijkheid om nieuwe technologieën en materialen toe te passen en te reageren op vragen van de markt en mondiale omstandigheden. In dit rapport wordt een overzicht gegeven van het gebruik van de meest voorkomende biopolymeren in geotextieltoepassingen, dus toepassingen in bijvoorbeeld de weg- en waterbouw of in de agro-industrie. Biopolymeren worden als volgt gedefinieerd: ‘polymeren die worden geproduceerd uit natuurlijke hernieuwbare grondstoffen’. Dit zijn bijvoorbeeld: • Duurzame beschikbare (delen van) planten en dieren (ook aquatische biomassa). • Primaire residuen (bermgras, houtafval, ...). • Secundaire residuen (bietenpulp, bierborstel, ...). • Tertiaire residuen (dierlijk vet, GFT, ...). Biobased houdt in dat een polymeer uit natuurlijke, dierlijke of hernieuwbare grondstof bestaat. Dit geeft een grotere onafhankelijkheid van de klassieke grondstofproducenten, zoals de aardolie- en gasproducenten. Echter moet bedacht worden dat er weer een afhankelijkheid van andere grondstofproducenten kan ontstaan. Natuurlijke grondstoffen zijn de meest bekende. Er is bijvoorbeeld cellulose uit katoen, vlas van de vlasplant of brandnetelvezel van de brandnetel. Onder dierlijke grondstoffen verstaan we onder andere chitosan uit schaaldieren. Een hernieuwbare grondstof is bijvoorbeeld zetmeel/suiker voor PLA (polymelkzuur. Deze biopolymeren worden besproken om duidelijk te maken welke soorten wel of niet geschikt zijn voor verschillende toepassingen in geotextiel. Een verder onderscheid wordt wel gemaakt op basis hun ‘end of life’: biodegradeerbaar en composteerbaar. Een materiaal is biodegradeerbaar wanneer de afbraak het gevolg is van de actie van micro-organismen (zwammen, bacteriën), waardoor het materiaal uiteindelijk wordt omgezet in water, biomassa, CO2 en/of methaan, ongeacht de tijd die hiervoor nodig is. Composteerbaar wil zeggen dat stoffen worden afgebroken bij het composteren met een snelheid die vergelijkbaar is met die van andere bekende composteerbare materialen (bijvoorbeeld groenafval). Met andere woorden: een materiaal is composteerbaar wanneer het afbraakproces compatibel is met de omgevingsomstandigheden van een huishoudelijke of industriële composteerinstallatie, zoals temperatuur, vochtigheid en tijd. Hierbij dient te worden opgemerkt dat composteerbare materialen biodegradeerbaar zijn, maar niet alle biodegradeerbare materialen zijn composteerbaar. In de geotextiel bestaan twee grote verschillen in toepassingen. De permanente of houdbare toepassingen en de degradeerbare toepassingen. Oeverbescherming is een goed voorbeeld van een degradeerbaar product. Een nieuwe oever bestaat voor een groot deel uit los zand. Om ervoor te zorgen dat de oever door bijvoorbeeld erosie niet verdwijnt, worden er kokosmatten gebruikt voor versteviging. Op deze kokosmatten vormt zich op den duur een nieuw ecosysteem. De kokosmatten zullen dan na een aantal jaren composteren zonder vervuilende grondstoffen in de aarde achter te laten. Maar in bijvoorbeeld wegen of bij viaducten, wordt versteviging toegepast met als doel langdurig functiebehoud van het polymeer. In dit rapport is een tabel opgenomen met daarin de behandelde biopolymeren met de belangrijkste eigenschappen. Zo kan bijvoorbeeld een geotextiel producent de meest optimale keuze maken voor de grondstoffen voor haar producten. Ook is een figuur opgenomen, waarin een verzameling aan geotoepassingen en biopolymeren (met degradeerbaar/biobased labels) in een overzicht is gezet. Biopolymeren kunnen

    Biocatalytic pre-treatment processes of cotton: Industrial application of academic research

    No full text
    Much research effort is invested in developing enzymatic treatments of textiles by focusing on the performance of enzymes at the laboratory scale. Despite all of this work, upgrading these developments from the laboratory scale to an industrial scale has not been very successful.Nowadays,companies are confronted with rapid developments of markets, logistics, and social and environmental responsibilities. Moreover, these organizations have to supply an ever-increasing amount of information to the authorities, shareholders, lobbyists, and pressure groups. Companies have tried to fulfill all of these demands, but this has often led to the loss of focus on new products and process development. However, both theory and practices of breakthrough innovations have shown that those rightfully proud of previous successes are usually not the ones that led the introduction of new technology, as shown and excellently documented by Christensen [1]. The textile industry is no exception to this observation.With the lack of management impetus for new product and process developments, companies began to reduce investments in these activities.However, this results in a reduction of the size of the company or even closure. Besides the hesitation from the top management of textile companies to focus on new developments,middle management level is also reluctant to evaluate and implement developments in new products and processes. One of the reasons for this reluctance is that many processes in the textile industry are notfully explored or known. From this lack of knowledge, it is easy to explain that there is hesitation for change, since not all consequences of a change in processing or production can be predicted. Often new developments cannot be fully tested and evaluated on the laboratory- or pilot-scale level.This is caused by the impossibility of mimicking industrial-scale production in a laboratory.Additionally, pilot-scale equipment is very expensive and for many companies it is not realistic to invest in this type of equipment. Fortunately an increasing number of textile companies have realized that they have to invest in new products and processes for their future survival and prosperity. New developments are decisive for future successes. If such companies decide to invest in new developments, it is clear that with the scarcity of capital for product and process developments, the chance of failure should be minimized. For successful process and product development, it is necessary to organize the development process with external partners because it is clear that it is almost impossible for individual textile companies to control the process from idea generation to academic research, implementation research, and development and industrial testing. These issues are especially characteristic for small- and medium-sized enterprises (SMEs). Herein, the collaboration has been organized on two research levels. The first research level is knowledge and know-how based. The universities and chemical suppliers worked closely together to investigate the new process.The aim was to explore the influence of process conditions and interactions of chemicals in sub-process steps as a result of the treatment.The second level is that of the industrial implementation of the new process. The universities and chemical suppliers worked closely together with different industries to implement the newly developed process. The focus in this part of the research was the interaction between the chemistry of the new process, equipment, and fabrics. A co-operation between the beneficiaries of the new process was established.The selection criterion for the co-peration was “who will earn something with the new process”. To answer this question, the value chain has been drawn as the simplified scheme shown in Fig. 1 [2]
    corecore