6 research outputs found

    In vivo Inhibition of the 3-Dehydroquinate Synthase by 7-Deoxysedoheptulose Depends on Promiscuous Uptake by Sugar Transporters in Cyanobacteria

    Get PDF
    7-Deoxysedoheptulose (7dSh) is a bioactive deoxy-sugar actively excreted by the unicellular cyanobacterium Synechococcus elongatus PCC 7942 (S. elongatus) but also Streptomyces setonensis. In our previous publications we have shown that in S. elongatus, 7dSh is exclusively synthesized by promiscuous enzyme activity from an inhibitory by-product of radical SAM enzymes, without a specific gene cluster being involved. Additionally, we showed that 7dSh inhibits the growth of cyanobacteria, but also the growth of plants and fungi, presumably by inhibiting the 3-dehydroquinate synthase (DHQS), the second enzyme of the shikimate pathway, as the substrate of this enzyme strongly accumulates in cells treated with 7dSh. In this study, by using purified DHQS of Anabaena variabilis ATCC 29413 (A. variabilis) we biochemically confirmed that 7dSh is a competitive inhibitor of this enzyme. By analyzing the effect of 7dSh on a subset of cyanobacteria from all the five subsections, we identified different species whose growth was inhibited by 7dSh. We also found that in some of the susceptible cyanobacteria import of 7dSh is mediated by structurally different and promiscuous transporters: 7dSh can be taken up by the fructose ABC-transporter in A. variabilis and via the glucose permease in Synechocystis sp. PCC 6803 (Synechocystis sp.). In both cases, an effective uptake and thereby intracellular enrichment of 7dSh was essential for the inhibitory activity. Importantly, spontaneous mutations in the sugar transporters of A. variabilis and Synechocystis sp. not only disabled growth of the two strains on fructose and glucose, respectively, but also almost abolished their sensitivity to 7dSh. Although we have clearly shown in these examples that the effective uptake plays an essential role in the inhibitory effect of 7dSh, questions remain about how 7dSh resistance works in other (cyano)bacteria. Also, the involvement of a putative ribokinase in 7dSh resistance in the producer strain S. elongatus remained to be further investigated. Overall, these data establish 7dSh as the first allelochemical targeting the shikimate pathway in other cyanobacteria and plants and suggest a role of 7dSh in niche competition

    How glyphosate and its associated acidity affect early development in zebrafish (Danio rerio)

    No full text
    Background Glyphosate is among the most extensively used pesticides worldwide. Following the ongoing highly controversial debate on this compound, its potential impact on non-target organisms is a fundamental scientific issue. In its pure compound form, glyphosate is known for its acidic properties. Methods We exposed zebrafish (Danio rerio) embryos to concentrations between 10 μM and 10 mM glyphosate in an unbuffered aqueous medium, as well as at pH 7, for 96 hours post fertilization (hpf). Furthermore, we investigated the effects of aqueous media in the range of pH 3 to 8, in comparison with 1 mM glyphosate treatment at the respective pH levels. Additionally, we exposed zebrafish to 7-deoxy-sedoheptulose (7dSh), another substance that interferes with the shikimate pathway by a mechanism analogous to that of glyphosate, at a concentration of one mM. The observed endpoints included mortality, the hatching rate, developmental delays at 24 hpf, the heart rate at 48 hpf and the malformation rate at 96 hpf. LC10/50, EC10 and, if reasonable, EC50 values were determined for unbuffered glyphosate. Results The results revealed high mortalities in all treatments associated with low pH, including high concentrations of unbuffered glyphosate (>500 μM), low pH controls and glyphosate treatments with pH 4, no mortality occurred, neither in the control nor in glyphosate treatments. At 1 mM, 7dSh did not induce any mortality, developmental delays or malformations; only slightly accelerated hatching and a decelerated heart rate were observed. Our results demonstrate that lethal impacts in zebrafish embryos can be attributed mainly to low pH, but we could also show a pH-independent effect of glyphosate on the development of zebrafish embryos on a sublethal level

    Hybrid Chemoenzymatic Synthesis of C-7-Sugars for Molecular Evidence of in vivo Shikimate Pathway Inhibition

    No full text
    The design of distinctive chemical synthesis strategies aims for the most efficient routes towards versatile compounds in drug target studies. Here, we establish a powerful hybrid synthetic approach of total chemical and chemoenzymatic synthesis to efficiently obtain various 7‐deoxy‐sedoheptulose (7dSh, 1) analogues, unique C(7) sugars, for structure‐activity relationship studies. 7dSh (1) is a rare microbial sugar with in planta herbicidal activity. As natural antimetabolite of 3‐dehydroquinate synthase (DHQS), 7dSh (1) inhibits the shikimate pathway, which is essential for the synthesis of aromatic amino acids in bacteria, fungi, and plants, but absent in mammals. As glyphosate, the most used chemical herbicide faces restrictions worldwide, DHQS has gained more attention as valid target of herbicides and antimicrobial agents. In vitro and in vivo analyses of the C(7)‐deoxysugars confirm DHQS as enzymatic target, highlight the crucial role of uptake for inhibition and add molecular aspects to target mechanism studies of C(7)‐sugars as our contribution to global efforts for alternative weed‐control strategies

    Cyanobacterial antimetabolite 7-deoxy-sedoheptulose blocks the shikimate pathway to inhibit the growth of prototrophic organisms

    No full text
    Mother Nature is a valuable resource for the discovery of drug and agricultural chemicals. Here, the authors show that 7-deoxy-sedoheptulose produced by a cyanobacterium is an antimicrobial and herbicidal compound that acts through inhibition of 3-dehydroquniate synthase in the shikimate pathway
    corecore