626 research outputs found
Thermal Conductivity and Specific Heat of the Spin-Ice Compound DyTiO: Experimental Evidence for Monopole Heat Transport
Elementary excitations in the spin-ice compound DyTiO can be
described as magnetic monopoles propagating independently within the pyrochlore
lattice formed by magnetic Dy ions. We studied the magnetic-field dependence of
the thermal conductivity {\kappa}(B) for B || [001] and observe clear evidence
for magnetic heat transport originating from the monopole excitations. The
magnetic contribution {\kappa}_{mag} is strongly field-dependent and correlates
with the magnetization M(B). The diffusion coefficient obtained from the ratio
of {\kappa}_{mag} and the magnetic specific heat is strongly enhanced below 1 K
indicating a high mobility of the monopole excitations in the spin-ice state.Comment: 5 pages, 4 figure
Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators
Whispering gallery resonators (WGR's), based on total internal reflection,
possess high quality factors in a broad spectral range. Thus, nonlinear optical
processes in such cavities are ideally suited for the generation of broadband
or tunable electromagnetic radiation. Experimentally and theoretically, we
investigate the tunability of optical parametric oscillation in a radially
structured WGR made of lithium niobate. With a 1.04 /mum pump wave, the signal
and idler waves are tuned from 1.78 to 2.5 \mum - including the point of
degeneracy - by varying the temperature between 20 and 62 {\deg}C. A weak
off-centering of the radial domain structure extends considerably the tuning
capabilities. The oscillation threshold lies in the mW-power range.Comment: 4 pages, 5 figure
Substitution effects on the temperature vs. magnetic-field phase diagrams of the quasi-1D effective Ising spin-1/2 chain system BaCoVO
BaCoVO is a one-dimensional antiferromagnetic spin-1/2 chain
system with pronounced Ising anisotropy of the magnetic exchange. Due to finite
interchain interactions long-range antiferromagnetic order develops below
K, which is accompanied by a structural distortion in
order to lift magnetic frustration effects. The corresponding temperature magnetic-field phase diagram is highly anisotropic with respect to the
magnetic-field direction and various details are still under vivid discussion.
Here, we report the influence of several substitutions on the magnetic
properties and the phase diagrams of BaCoVO. We investigate the
substitution series
BaSrCoVO
over the full range as well as the influence of a partial
substitution of the magnetic Co by small amounts of other magnetic
transition metals or by non-magnetic magnesium. In all cases, the phase
diagrams were obtained on single crystals from magnetization data and/or
high-resolution studies of the thermal expansion and magnetostriction.Comment: 10 pages, 10 figure
Low-temperature ordered phases of the spin- XXZ chain system CsCoCl
In this study the magnetic order of the spin-1/2 XXZ chain system
CsCoCl in a temperature range from 50 mK to 0.5 K and in applied
magnetic fields up to 3.5 T is investigated by high-resolution measurements of
the thermal expansion and the specific heat. Applying magnetic fields along a
or c suppresses completely at about 2.1 T. In addition, we find
an adjacent intermediate phase before the magnetization saturates close to 2.5
T. For magnetic fields applied along b, a surprisingly rich phase diagram
arises. Two additional transitions are observed at critical fields T and T, which we propose to
arise from a two-stage spin-flop transition.Comment: 10 pages, 10 figure
The electric two-echelon vehicle routing problem
Two-echelon distribution systems are attractive from an economical standpoint and help to keep large vehicles out of densely populated city centers. Large trucks can be used to deliver goods to intermediate facilities in accessible locations, whereas smaller vehicles allow to reach the final customers. Due to their reduced size, pollution, and noise, multiple companies consider using an electric fleet of terrestrial or aerial vehicles for last-mile deliveries. Route planning in multi-tier logistics leads to notoriously difficult problems. This difficulty is accrued in the presence of an electric fleet since each vehicle operates on a smaller range and may require planned visits to recharging stations. To study these challenges, we introduce the electric two-echelon vehicle routing problem (E2EVRP) as a prototypical problem. We propose a large neighborhood search (LNS) metaheuristic as well as an exact mathematical programming algorithm, which uses decomposition techniques to enumerate promising first-level solutions in conjunction with bounding functions and route enumeration for the second-level routes. These algorithms produce optimal or near-optimal solutions for the problem and allow us to evaluate the impact of several defining features of optimized battery-powered distribution networks. We created representative E2EVRP benchmark instances to simulate realistic metropolitan areas. In particular, we observe that the detour miles due to recharging decrease proportionally to 1/ρx with x ≈ 5/4 as a function of the charging stations density ρ; e.g., in a scenario where the density of charging stations is doubled, recharging detours are reduced by 58%. Finally, we evaluate the trade-off between battery capacity and detour miles. This estimate is critical for strategic fleet-acquisition decisions, in a context where large batteries are generally more costly and less environment-friendly
Quantum Criticality of an Ising-like Spin-1/2 Antiferromagnetic Chain in Transverse Magnetic Field
We report on magnetization, sound velocity, and magnetocaloric-effect
measurements of the Ising-like spin-1/2 antiferromagnetic chain system
BaCoVO as a function of temperature down to 1.3 K and applied
transverse magnetic field up to 60 T. While across the N\'{e}el temperature of
K anomalies in magnetization and sound velocity confirm the
antiferromagnetic ordering transition, at the lowest temperature the
field-dependent measurements reveal a sharp softening of sound velocity
and a clear minimum of temperature at T,
indicating the suppression of the antiferromagnetic order. At higher fields,
the curve shows a broad minimum at T, accompanied by a
broad minimum in the sound velocity and a saturation-like magnetization. These
features signal a quantum phase transition which is further characterized by
the divergent behavior of the Gr\"{u}neisen parameter . By contrast, around the critical field, the
Gr\"{u}neisen parameter converges as temperature decreases, pointing to a
quantum critical point of the one-dimensional transverse-field Ising model.Comment: Phys. Rev. Lett., to appea
Cross section measurements on 61Cu for proton beam monitoring above 20 MeV
Introduction
All experimental studies involving charged particle induced nuclear reactions require a precise knowledge of monitor reactions. A number of well described proton induced monitor reactions exist in the lower energy range [1], which is covered by most medical cyclotrons. Concerning proton energies above 20 MeV, however, the accuracy of the monitor reactions declines as cross section data becomes scarcer. Furthermore, the growing interest in precise determination of projectile energies by comparing of ratios of monitor reaction cross sections demands new measurements and evaluations of known data for high threshold monitor radionuclides.
In this work cross section measurements on the formation of 61Cu were done and energy de-pendent radionuclide ratios were calculated.
Material and Methods
For investigation of the natCu(p,x)61Cu reaction copper foils of natural isotopic composition (Goodfellow Ltd.) were irradiated. The targets were of 10 and 20 μm thickness, having a diameter of 15 mm.
Proton bombardments up to 45 MeV incident energy were done in the stacked-foil arrangement at the accelerator JULIC of the Nuclear Physics Institute (IKP) of the Forschungszentrum Jülich. In addition to an internal irradiation possibility the cyclotron is equipped with an external target station which was used for most experiments. It can adapt standard and slanting solid target holders and is equipped with a water cooled four sector collimator and additional helium cooling of the entry foil.
Several irradiations were executed. In each stack, besides copper samples, aluminium absorbers and additional nickel monitor foils were also placed, the latter for the determination of the respective beam current.
The produced radioactivity of 61Cu was analysed non-destructively using HPGe γ-ray detectors (EG&G Ortec).
Results and Conclusion
Reaction cross sections of the natCu(p,x)61Cu process up to 45 MeV were measured and com-pared with existing data from the literature (FIG. 2). Except for the data of Williams et al. our results are in good agreement, showing a maxi-mum of about 165 mbarn at 37.5 MeV proton energy. The overall uncertainty of the new cross section data is between 8 and 10 %.
In FIG. 3, the excitation functions of the relevant monitor reactions on Cu are shown.
In combination with the excitation function of the natCu(p,xn)62Zn reaction, isotope ratios were calculated which can be used for determination of the proton energy within a target stack in the energy range of 22–40 MeV as described by Piel et al. [3]. FIGURE 4 shows the cross section ratio in dependence of the proton energy.
Above this energy, 65Zn could be used to generate isotope ratios for energy determination, although the long half-life (T½ = 244.3 d) of that radionuclide may be a problem.
Additional cross section measurements are planned in order to further strengthen the data base of this potential monitor reaction. The results of this work shall be evaluated in the framework of an ongoing Coordinated Research Project of the IAEA
The spin- XXZ chain system CsCoCl in a transverse magnetic field
Comparing high-resolution specific heat and thermal expansion measurements to
exact finite-size diagonalization, we demonstrate that CsCoCl for a
magnetic field along the crystallographic b axis realizes the
spin- XXZ chain in a transverse field. Exploiting both thermal as
well as virtual excitations of higher crystal field states, we find that the
spin chain is in the XY-limit with an anisotropy
substantially smaller than previously believed. A spin-flop Ising quantum phase
transition occurs at a critical field of T
before around 3.5 T the description in terms of an effective spin-
chain becomes inapplicable.Comment: 5 pages, 3 figure
LOF: Identifying density-based local outliers
For many KDD applications, such as detecting criminal activities in E-commerce, finding the rare instances or the outliers, can be more interesting than finding the common patterns. Existing work in outlier detection regards being an outlier as a binary property. In this paper, we contend that for many scenarios, it is more meaningful to assign to each object a degree of being an outlier. This degree is called the local outlier factor (LOF) of an object. It is local in that the degree depends on how isolated the object is with respect to the surrounding neighborhood. We give a detailed formal analysis showing that LOF enjoys many desirable properties. Using realworld datasets, we demonstrate that LOF can be used to find outliers which appear to be meaningful, but can otherwise not be identified with existing approaches. Finally, a careful performance evaluation of our algorithm confirms we show that our approach of finding local outliers can be practical
- …