4,182 research outputs found

    Relativistic formulation of quantum state diffusion?

    Full text link
    The recently reported relativistic formulation of the well-known non-relativistic quantum state diffusion is seriously mistaken. It predicts, for instance, inconsistent measurement outcomes for the same system when seen by two different inertial observers.Comment: 5 pages LaTeX, submitted to J. Phys.

    PT-symmetric quantum Liouvillian dynamics

    Full text link
    We discuss a combination of unitary and anti-unitary symmetry of quantum Liouvillian dynamics, in the context of open quantum systems, which implies a D2 symmetry of the complex Liovillean spectrum. For sufficiently weak system-bath coupling it implies a uniform decay rate for all coherences, i.e. off-diagonal elements of the system's density matrix taken in the eigenbasis of the Hamiltonian. As an example we discuss symmetrically boundary driven open XXZ spin 1/2 chains.Comment: Note [18] added with respect to a published version, explaining the symmetry of the matrix V [eq. (14)

    Phenomenological memory-kernel master equations and time-dependent Markovian processes

    Get PDF
    Do phenomenological master equations with memory kernel always describe a non-Markovian quantum dynamics characterized by reverse flow of information? Is the integration over the past states of the system an unmistakable signature of non-Markovianity? We show by a counterexample that this is not always the case. We consider two commonly used phenomenological integro-differential master equations describing the dynamics of a spin 1/2 in a thermal bath. By using a recently introduced measure to quantify non-Markovianity [H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009)] we demonstrate that as far as the equations retain their physical sense, the key feature of non-Markovian behavior does not appear in the considered memory kernel master equations. Namely, there is no reverse flow of information from the environment to the open system. Therefore, the assumption that the integration over a memory kernel always leads to a non-Markovian dynamics turns out to be vulnerable to phenomenological approximations. Instead, the considered phenomenological equations are able to describe time-dependent and uni-directional information flow from the system to the reservoir associated to time-dependent Markovian processes.Comment: 5 pages, no figure

    Stochastic wave function method for non-Markovian quantum master equations

    Get PDF
    A generalization of the stochastic wave function method to quantum master equations which are not in Lindblad form is developed. The proposed stochastic unravelling is based on a description of the reduced system in a doubled Hilbert space and it is shown, that this method is capable of simulating quantum master equations with negative transition rates. Non-Markovian effects in the reduced systems dynamics can be treated within this approach by employing the time-convolutionless projection operator technique. This ansatz yields a systematic perturbative expansion of the reduced systems dynamics in the coupling strength. Several examples such as the damped Jaynes Cummings model and the spontaneous decay of a two-level system into a photonic band gap are discussed. The power as well as the limitations of the method are demonstrated.Comment: RevTex, 14 pages, 9 figures, uses multico

    Irreversible photon transfer in an ensemble of Λ\Lambda-type atoms and photon diode

    Full text link
    We show that a pair of quantized cavity modes interacting with a spectrally broadened ensemble of Lambda-type atoms is analogous to an ensemble of two level systems coupled to a bosonic reservoir. This provides the possibility for an irreversible photon transfer between photon modes. The density of states as well as the quantum state of the reservoir can be engineered allowing the observation of effects such as the quantum Zeno- and anti-Zeno effect, the destructive interference of decay channels and the decay in a squeezed vacuum. As a particular application we discuss a photon diode, i.e. a device which directs a single photon from anyone of two input ports to a common output port.Comment: 5 pages, 2 figure

    Dissipation and detection of polaritons in ultrastrong coupling regime

    Full text link
    We have investigated theoretically a dissipative polariton system in the ultrastrong light-matter coupling regime without using the rotating-wave approximation on system-reservoir coupling. Photons in a cavity and excitations in matter respectively couple two large ensembles of harmonic oscillators (photonic and excitonic reservoirs). Inheriting the quantum statistics of polaritons in the ultrastrong coupling regime, in the ground state of the whole system, the two reservoirs are not in the vacuum states but they are squeezed and correlated. We suppose this non-vacuum reservoir state in the master equation and in the input-output formalism with Langevin equations. Both two approaches consistently guarantee the decay of polariton system to its ground state, and no photon detection is also obtained when the polariton system is in the ground state.Comment: 18 pages, 3 figure

    Non-Markovian master equation for a damped oscillator with time-varying parameters

    Full text link
    We derive an exact non-Markovian master equation that generalizes the previous work [Hu, Paz and Zhang, Phys. Rev. D {\bf 45}, 2843 (1992)] to damped harmonic oscillators with time-varying parameters. This is achieved by exploiting the linearity of the system and operator solution in Heisenberg picture. Our equation governs the non-Markovian quantum dynamics when the system is modulated by external devices. As an application, we apply our equation to parity kick decoupling problems. The time-dependent dissipative coefficients in the master equation are shown to be modified drastically when the system is driven by π\pi pulses. For coherence protection to be effective, our numerical results indicate that kicking period should be shorter than memory time of the bath. The effects of using soft pulses in an ohmic bath are also discussed

    Stochastic wave function approach to the calculation of multitime correlation functions of open quantum systems

    Full text link
    Within the framework of probability distributions on projective Hilbert space a scheme for the calculation of multitime correlation functions is developed. The starting point is the Markovian stochastic wave function description of an open quantum system coupled to an environment consisting of an ensemble of harmonic oscillators in arbitrary pure or mixed states. It is shown that matrix elements of reduced Heisenberg picture operators and general time-ordered correlation functions can be expressed by time-symmetric expectation values of extended operators in a doubled Hilbert space. This representation allows the construction of a stochastic process in the doubled Hilbert space which enables the determination of arbitrary matrix elements and correlation functions. The numerical efficiency of the resulting stochastic simulation algorithm is investigated and compared with an alternative Monte Carlo wave function method proposed first by Dalibard et al. [Phys. Rev. Lett. {\bf 68}, 580 (1992)]. By means of a standard example the suggested algorithm is shown to be more efficient numerically and to converge faster. Finally, some specific examples from quantum optics are presented in order to illustrate the proposed method, such as the coupling of a system to a vacuum, a squeezed vacuum within a finite solid angle, and a thermal mixture of coherent states.Comment: RevTex, 19 pages, 3 figures, uses multico

    New method to simulate quantum interference using deterministic processes and application to event-based simulation of quantum computation

    Full text link
    We demonstrate that networks of locally connected processing units with a primitive learning capability exhibit behavior that is usually only attributed to quantum systems. We describe networks that simulate single-photon beam-splitter and Mach-Zehnder interferometer experiments on a causal, event-by-event basis and demonstrate that the simulation results are in excellent agreement with quantum theory. We also show that this approach can be generalized to simulate universal quantum computers.Comment: J. Phys. Soc. Jpn. (in press) http://www.compphys.net/dl

    Dissipation in a rotating frame: master equation, effective temperature and Lamb-shift

    Full text link
    Motivated by recent realizations of microwave-driven nonlinear resonators in superconducting circuits, the impact of environmental degrees of freedom is analyzed as seen from a rotating frame. A system plus reservoir model is applied to consistently derive in the weak coupling limit the master equation for the reduced density in the moving frame and near the first bifurcation threshold. It turns out that additional interactions between momenta of system and bath appear which have been omitted in previous studies. Explicit expressions for the effective temperature and the Lamb-shift are given which for ohmic baths are in agreement with experimental findings, while for structured environments population inversion is predicted that may qualitatively explain recent observations.Comment: 7 pages, 5 figure
    • …
    corecore