4,182 research outputs found
Relativistic formulation of quantum state diffusion?
The recently reported relativistic formulation of the well-known
non-relativistic quantum state diffusion is seriously mistaken. It predicts,
for instance, inconsistent measurement outcomes for the same system when seen
by two different inertial observers.Comment: 5 pages LaTeX, submitted to J. Phys.
PT-symmetric quantum Liouvillian dynamics
We discuss a combination of unitary and anti-unitary symmetry of quantum
Liouvillian dynamics, in the context of open quantum systems, which implies a
D2 symmetry of the complex Liovillean spectrum. For sufficiently weak
system-bath coupling it implies a uniform decay rate for all coherences, i.e.
off-diagonal elements of the system's density matrix taken in the eigenbasis of
the Hamiltonian. As an example we discuss symmetrically boundary driven open
XXZ spin 1/2 chains.Comment: Note [18] added with respect to a published version, explaining the
symmetry of the matrix V [eq. (14)
Phenomenological memory-kernel master equations and time-dependent Markovian processes
Do phenomenological master equations with memory kernel always describe a
non-Markovian quantum dynamics characterized by reverse flow of information? Is
the integration over the past states of the system an unmistakable signature of
non-Markovianity? We show by a counterexample that this is not always the case.
We consider two commonly used phenomenological integro-differential master
equations describing the dynamics of a spin 1/2 in a thermal bath. By using a
recently introduced measure to quantify non-Markovianity [H.-P. Breuer, E.-M.
Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009)] we demonstrate that
as far as the equations retain their physical sense, the key feature of
non-Markovian behavior does not appear in the considered memory kernel master
equations. Namely, there is no reverse flow of information from the environment
to the open system. Therefore, the assumption that the integration over a
memory kernel always leads to a non-Markovian dynamics turns out to be
vulnerable to phenomenological approximations. Instead, the considered
phenomenological equations are able to describe time-dependent and
uni-directional information flow from the system to the reservoir associated to
time-dependent Markovian processes.Comment: 5 pages, no figure
Stochastic wave function method for non-Markovian quantum master equations
A generalization of the stochastic wave function method to quantum master
equations which are not in Lindblad form is developed. The proposed stochastic
unravelling is based on a description of the reduced system in a doubled
Hilbert space and it is shown, that this method is capable of simulating
quantum master equations with negative transition rates. Non-Markovian effects
in the reduced systems dynamics can be treated within this approach by
employing the time-convolutionless projection operator technique. This ansatz
yields a systematic perturbative expansion of the reduced systems dynamics in
the coupling strength. Several examples such as the damped Jaynes Cummings
model and the spontaneous decay of a two-level system into a photonic band gap
are discussed. The power as well as the limitations of the method are
demonstrated.Comment: RevTex, 14 pages, 9 figures, uses multico
Irreversible photon transfer in an ensemble of -type atoms and photon diode
We show that a pair of quantized cavity modes interacting with a spectrally
broadened ensemble of Lambda-type atoms is analogous to an ensemble of two
level systems coupled to a bosonic reservoir. This provides the possibility for
an irreversible photon transfer between photon modes. The density of states as
well as the quantum state of the reservoir can be engineered allowing the
observation of effects such as the quantum Zeno- and anti-Zeno effect, the
destructive interference of decay channels and the decay in a squeezed vacuum.
As a particular application we discuss a photon diode, i.e. a device which
directs a single photon from anyone of two input ports to a common output port.Comment: 5 pages, 2 figure
Dissipation and detection of polaritons in ultrastrong coupling regime
We have investigated theoretically a dissipative polariton system in the
ultrastrong light-matter coupling regime without using the rotating-wave
approximation on system-reservoir coupling. Photons in a cavity and excitations
in matter respectively couple two large ensembles of harmonic oscillators
(photonic and excitonic reservoirs). Inheriting the quantum statistics of
polaritons in the ultrastrong coupling regime, in the ground state of the whole
system, the two reservoirs are not in the vacuum states but they are squeezed
and correlated. We suppose this non-vacuum reservoir state in the master
equation and in the input-output formalism with Langevin equations. Both two
approaches consistently guarantee the decay of polariton system to its ground
state, and no photon detection is also obtained when the polariton system is in
the ground state.Comment: 18 pages, 3 figure
Non-Markovian master equation for a damped oscillator with time-varying parameters
We derive an exact non-Markovian master equation that generalizes the
previous work [Hu, Paz and Zhang, Phys. Rev. D {\bf 45}, 2843 (1992)] to damped
harmonic oscillators with time-varying parameters. This is achieved by
exploiting the linearity of the system and operator solution in Heisenberg
picture. Our equation governs the non-Markovian quantum dynamics when the
system is modulated by external devices. As an application, we apply our
equation to parity kick decoupling problems. The time-dependent dissipative
coefficients in the master equation are shown to be modified drastically when
the system is driven by pulses. For coherence protection to be effective,
our numerical results indicate that kicking period should be shorter than
memory time of the bath. The effects of using soft pulses in an ohmic bath are
also discussed
Stochastic wave function approach to the calculation of multitime correlation functions of open quantum systems
Within the framework of probability distributions on projective Hilbert space
a scheme for the calculation of multitime correlation functions is developed.
The starting point is the Markovian stochastic wave function description of an
open quantum system coupled to an environment consisting of an ensemble of
harmonic oscillators in arbitrary pure or mixed states. It is shown that matrix
elements of reduced Heisenberg picture operators and general time-ordered
correlation functions can be expressed by time-symmetric expectation values of
extended operators in a doubled Hilbert space. This representation allows the
construction of a stochastic process in the doubled Hilbert space which enables
the determination of arbitrary matrix elements and correlation functions. The
numerical efficiency of the resulting stochastic simulation algorithm is
investigated and compared with an alternative Monte Carlo wave function method
proposed first by Dalibard et al. [Phys. Rev. Lett. {\bf 68}, 580 (1992)]. By
means of a standard example the suggested algorithm is shown to be more
efficient numerically and to converge faster. Finally, some specific examples
from quantum optics are presented in order to illustrate the proposed method,
such as the coupling of a system to a vacuum, a squeezed vacuum within a finite
solid angle, and a thermal mixture of coherent states.Comment: RevTex, 19 pages, 3 figures, uses multico
New method to simulate quantum interference using deterministic processes and application to event-based simulation of quantum computation
We demonstrate that networks of locally connected processing units with a
primitive learning capability exhibit behavior that is usually only attributed
to quantum systems. We describe networks that simulate single-photon
beam-splitter and Mach-Zehnder interferometer experiments on a causal,
event-by-event basis and demonstrate that the simulation results are in
excellent agreement with quantum theory. We also show that this approach can be
generalized to simulate universal quantum computers.Comment: J. Phys. Soc. Jpn. (in press) http://www.compphys.net/dl
Dissipation in a rotating frame: master equation, effective temperature and Lamb-shift
Motivated by recent realizations of microwave-driven nonlinear resonators in
superconducting circuits, the impact of environmental degrees of freedom is
analyzed as seen from a rotating frame. A system plus reservoir model is
applied to consistently derive in the weak coupling limit the master equation
for the reduced density in the moving frame and near the first bifurcation
threshold. It turns out that additional interactions between momenta of system
and bath appear which have been omitted in previous studies. Explicit
expressions for the effective temperature and the Lamb-shift are given which
for ohmic baths are in agreement with experimental findings, while for
structured environments population inversion is predicted that may
qualitatively explain recent observations.Comment: 7 pages, 5 figure
- …