53 research outputs found

    Scale Alone Does not Improve Mechanistic Interpretability in Vision Models

    Full text link
    In light of the recent widespread adoption of AI systems, understanding the internal information processing of neural networks has become increasingly critical. Most recently, machine vision has seen remarkable progress by scaling neural networks to unprecedented levels in dataset and model size. We here ask whether this extraordinary increase in scale also positively impacts the field of mechanistic interpretability. In other words, has our understanding of the inner workings of scaled neural networks improved as well? We use a psychophysical paradigm to quantify one form of mechanistic interpretability for a diverse suite of nine models and find no scaling effect for interpretability - neither for model nor dataset size. Specifically, none of the investigated state-of-the-art models are easier to interpret than the GoogLeNet model from almost a decade ago. Latest-generation vision models appear even less interpretable than older architectures, hinting at a regression rather than improvement, with modern models sacrificing interpretability for accuracy. These results highlight the need for models explicitly designed to be mechanistically interpretable and the need for more helpful interpretability methods to increase our understanding of networks at an atomic level. We release a dataset containing more than 130'000 human responses from our psychophysical evaluation of 767 units across nine models. This dataset facilitates research on automated instead of human-based interpretability evaluations, which can ultimately be leveraged to directly optimize the mechanistic interpretability of models.Comment: Spotlight at NeurIPS 2023. The first two authors contributed equally. Code available at https://brendel-group.github.io/imi

    An Interventional Perspective on Identifiability in Gaussian LTI Systems with Independent Component Analysis

    Full text link
    We investigate the relationship between system identification and intervention design in dynamical systems. While previous research demonstrated how identifiable representation learning methods, such as Independent Component Analysis (ICA), can reveal cause-effect relationships, it relied on a passive perspective without considering how to collect data. Our work shows that in Gaussian Linear Time-Invariant (LTI) systems, the system parameters can be identified by introducing diverse intervention signals in a multi-environment setting. By harnessing appropriate diversity assumptions motivated by the ICA literature, our findings connect experiment design and representational identifiability in dynamical systems. We corroborate our findings on synthetic and (simulated) physical data. Additionally, we show that Hidden Markov Models, in general, and (Gaussian) LTI systems, in particular, fulfil a generalization of the Causal de Finetti theorem with continuous parameters.Comment: CLeaR2024 camera ready. Code available at https://github.com/rpatrik96/lti-ic

    Covariant boost and structure functions of baryons in Gross-Neveu models

    Full text link
    Baryons in the large N limit of two-dimensional Gross-Neveu models are reconsidered. The time-dependent Dirac-Hartree-Fock approach is used to boost a baryon to any inertial frame and shown to yield the covariant energy-momentum relation. Momentum distributions are computed exactly in arbitrary frames and used to interpolate between the rest frame and the infinite momentum frame, where they are related to structure functions. Effects from the Dirac sea depend sensitively on the occupation fraction of the valence level and the bare fermion mass and do not vanish at infinite momentum. In the case of the kink baryon, they even lead to divergent quark and antiquark structure functions at x=0.Comment: 13 pages, 12 figures; v2: minor correction
    • …
    corecore