35 research outputs found

    Rescue of glucocorticoid-programmed adipocyte inflammation by omega-3 fatty acid supplementation in the rat

    Get PDF
    BACKGROUND: Adverse fetal environments predispose offspring to pathologies associated with the metabolic syndrome. Previously we demonstrated that adult offspring of dexamethasone-treated mothers had elevated plasma insulin and pro-inflammatory cytokines, effects prevented by a postnatal diet enriched with omega (n)-3 fatty acids. Here we tested whether prenatal glucocorticoid excess also programmed the adipose tissue phenotype, and whether this outcome is rescued by dietary n-3 fatty acids. METHODS: Offspring of control and dexamethasone-treated mothers (0.75 μg/ml in drinking water, day 13 to term) were cross-fostered to mothers on a standard (Std) or high n-3 (Hn3) diet at birth. Offspring remained on these diets post-weaning, and serum and retroperitoneal fat were obtained at 6 months of age (n = 5-8 per group). Serum was analysed for blood lipids and fatty acid profiles, adipocyte cross sectional area was measured by unbiased stereological analysis and adipose expression of markers of inflammation, glucocorticoid sensitivity and lipid metabolism were determined by RT-qPCR analysis. RESULTS: Serum total fatty acid levels were elevated (P < 0.01) in male offspring of dexamethasone-treated mothers, an effect prevented by Hn3 consumption. Prenatal dexamethasone also programmed increased adipose expression of Il6, Il1b (both P < 0.05) and Tnfa (P < 0.001) mRNAs regardless of fetal sex, but again this effect was prevented (for Il6 and Il1b) by Hn3 consumption. Offspring of dexamethasone-treated mothers had increased adipose expression of Gr (P = 0.008) and Ppara (P < 0.05) regardless of sex or postnatal diet, while 11bHsd1 was upregulated in males only. The Hn3 diet increased Ppard expression and reduced adipocyte size in all offspring (both P < 0.05) irrespective of prenatal treatment. CONCLUSIONS: Prenatal glucocorticoid exposure programmed increased expression of inflammatory markers and enhanced glucocorticoid sensitivity of adipose tissue. Partial prevention of this phenotype by high n-3 consumption indicates that postnatal dietary manipulations can limit adverse fetal programming effects on adipose tissue

    The science consultancy project – Improving students perceived employability skills through a school placement unit

    Get PDF
    General graduate attributes are among some of the key skills that students in tertiary education develop so that they can increase their competitiveness in the workforce. There is currently a push for work integrated learning (WIL), with particular attention put towards placements, within the tertiary education sector to enable more work ready graduates from universities (Department of Industry, 2014). WIL has been shown to enhance students’ transferable skills by putting them in real world context. (Jackson, 2015) The traditional work placement has been to engage with industry. However, finding placements within industry is challenging. To meet the demand of student work placements the Faculty of Science at the University of Western Australia designed a unit where students act as a consultant to a primary or high school teacher that wanted a particular resource created for their science class. This presentation will describe the development of the unit, the assessment tasks and face-to-face interactions within the unit. Moreover, the reflection of students towards their project and time as a consultant provides valuable insight into the range of employability skills that students development within this unit

    Changes in the Placental Glucocorticoid Barrier During Rat Pregnancy: Impact on Placental Corticosterone Levels and Regulation by Progesterone 1

    Get PDF
    ABSTRACT Glucocorticoid excess in utero inhibits fetal growth and programs adverse outcomes in adult offspring. Access of maternal glucocorticoid to the glucocorticoid receptor (NR3C1) in the placenta and fetus is regulated by metabolism via the 11beta-hydroxysteroid dehydrogenase (HSD11B) enzymes, as well as multidrug resistance P-glycoprotein (ABCB1)-mediated efflux of glucocorticoids from the syncytiotrophoblast. This study determined expression of genes encoding the two HSD11B isoforms (Hsd11b1 and Hsd11b2), the two ABCB1 isoforms (Abcb1a and Abcb1b), and Nr3c1 in the junctional and labyrinth zones of rat placentas at Days 16 and 22 of normal gestation (Day 23 is term). To assess possible regulation of the Hsd11b and Abcb1 isoforms by glucocorticoids and progesterone, their placental expression was also measured at Day 22 after partial progesterone withdrawal from Day 16 (maternal ovariectomy plus full estrogen and partial progesterone replacement) or after treatment with dexamethasone acetate (1 lg/ml of drinking water from Day 13). Expression of Hsd11b1 mRNA increased in the labyrinth zone (the site of maternal-fetal exchange) from Day 16 to Day 22, whereas that of Hsd11b2 fell dramatically. Consistent with these changes, corticosterone levels increased 10-fold in the labyrinth zone over this period. Expression of both Abcb1a and Abcb1b was markedly higher in the labyrinth zone compared with the junctional zone on both days, consistent with the proposed barrier role of ABCB1 in the placenta. Nr3c1 mRNA expression was similar in the two placental zones at Day 16 but increased 3-fold in the labyrinth zone by Day 22. Partial progesterone withdrawal increased Hsd11b1 mRNA and protein expression in the labyrinth zone but decreased Nr3c1 mRNA expression. These data show that the dynamic expression patterns of the placental HSD11Bs in late gestation are associated with dramatic shifts in placental corticosterone. Moreover, the late gestational rise in labyrinthine Hsd11b1 seems to be driven by the normal prepartum fall in progesterone level. 11beta-hydroxysteroid dehydrogenase, corticosterone, P-glycoprotein, placental glucocorticoid barrier, progesteron

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p
    corecore