339 research outputs found

    Biological Markers of Auditory Gap Detection in Young, Middle-Aged, and Older Adults

    Get PDF
    The capability of processing rapid fluctuations in the temporal envelope of sound declines with age and this contributes to older adults' difficulties in understanding speech. Although, changes in central auditory processing during aging have been proposed as cause for communication deficits, an open question remains which stage of processing is mostly affected by age related changes. We investigated auditory temporal resolution in young, middle-aged, and older listeners with neuromagnetic evoked responses to gap stimuli with different leading marker and gap durations. Signal components specific for processing the physical details of sound stimuli as well as the auditory objects as a whole were derived from the evoked activity and served as biological markers for temporal processing at different cortical levels. Early oscillatory 40-Hz responses were elicited by the onsets of leading and lagging markers and indicated central registration of the gap with similar amplitude in all three age groups. High-gamma responses were predominantly related to the duration of no-gap stimuli or to the duration of gaps when present, and decreased in amplitude and phase locking with increasing age. Correspondingly, low-frequency activity around 200 ms and later was reduced in middle aged and older participants. High-gamma band, and long-latency low-frequency responses were interpreted as reflecting higher order processes related to the grouping of sound items into auditory objects and updating of memory for these objects. The observed effects indicate that age-related changes in auditory acuity have more to do with higher-order brain functions than previously thought

    Inhibiting tumor necrosis factor-α before amyloidosis prevents synaptic deficits in an Alzheimer's disease model

    Get PDF
    International audienceDeficits in synaptic structure and function are likely to underlie cognitive impairments in Alzheimer's disease. While synaptic deficits are commonly found in animal models of amyloidosis, it is unclear how amyloid pathology may impair synaptic functions. In some amyloid mouse models of Alzheimer's disease , however, synaptic deficits are preceded by hyperexcitability of glutamate synapses. In the amyloid transgenic mouse model TgCRND8, we therefore investigated whether early enhancement of gluta-matergic transmission was responsible for development of later synaptic deficits. Hippocampi from 1-month-old TgCRND8 mice revealed increased basal transmission and plasticity of glutamate synapses that was related to increased levels of tumor necrosis factor a (TNFa). Treating these 1-month-old mice for 4 weeks with the TNFa inhibitor XPro1595 prevented synaptic deficits otherwise apparent at the age of 6 months. In this mouse model at least, reversing the hyperexcitability of glutamate synapses via TNFa blockade before the onset of amyloid plaque formation prevented later synaptic deficits

    Trait Mindfulness Is Associated With Less Amyloid, Tau, and Cognitive Decline in Individuals at Risk for Alzheimer's Disease

    Get PDF
    BACKGROUND: Mindfulness, defined as nonjudgmental awareness of the present moment, has been associated with an array of mental and physical health benefits. Mindfulness may also represent a protective factor for Alzheimer's disease (AD). Here, we tested the potential protective effect of trait mindfulness on cognitive decline and AD pathology in older adults at risk for AD dementia. METHODS: Measures of trait mindfulness, longitudinal cognitive assessments, and amyloid-β (Aβ) and tau positron emission tomography scans were collected in 261 nondemented older adults with a family history of AD dementia from the PREVENT-AD (Pre-symptomatic Evaluation of Experimental or Novel Treatments for AD) observational cohort study. Multivariate partial least squares analyses were used to examine relationships between combinations of different facets of trait mindfulness and 1) cognitive decline, 2) Aβ, and 3) tau. RESULTS: Higher levels of mindful nonjudgment, describing, and nonreactivity were associated with less cognitive decline in attention, global cognition, and immediate and delayed memory. Higher levels of mindful nonjudgment and nonreactivity were related to less Aβ positron emission tomography signal in bilateral medial and lateral temporoparietal and frontal regions. Higher levels of mindful acting with awareness, describing, nonjudgment, and nonreactivity were associated with less tau positron emission tomography signal in bilateral medial and lateral temporal regions. CONCLUSIONS: Trait mindfulness was associated with less cognitive decline and less Aβ and tau in the brain in older adults at risk for AD dementia. Longitudinal studies examining the temporal relationship between trait mindfulness and AD markers, along with mindfulness intervention studies, will be important for further clarifying the potential protective benefits of mindfulness on AD risk

    Accelerated functional brain aging in pre-clinical familial Alzheimer's disease

    Get PDF
    Alzheimer's disease has been associated with increased structural brain aging. Here the authors describe a model that predicts brain aging from resting state functional connectivity data, and demonstrate this is accelerated in individuals with pre-clinical familial Alzheimer's disease. Resting state functional connectivity (rs-fMRI) is impaired early in persons who subsequently develop Alzheimer's disease (AD) dementia. This impairment may be leveraged to aid investigation of the pre-clinical phase of AD. We developed a model that predicts brain age from resting state (rs)-fMRI data, and assessed whether genetic determinants of AD, as well as beta-amyloid (A beta) pathology, can accelerate brain aging. Using data from 1340 cognitively unimpaired participants between 18-94 years of age from multiple sites, we showed that topological properties of graphs constructed from rs-fMRI can predict chronological age across the lifespan. Application of our predictive model to the context of pre-clinical AD revealed that the pre-symptomatic phase of autosomal dominant AD includes acceleration of functional brain aging. This association was stronger in individuals having significant A beta pathology

    Is telomere length socially patterned? Evidence from the West of Scotland Twenty-07 study

    Get PDF
    Lower socioeconomic status (SES) is strongly associated with an increased risk of morbidity and premature mortality, but it is not known if the same is true for telomere length, a marker often used to assess biological ageing. The West of Scotland Twenty-07 Study was used to investigate this and consists of three cohorts aged approximately 35 (N = 775), 55 (N = 866) and 75 years (N = 544) at the time of telomere length measurement. Four sets of measurements of SES were investigated: those collected contemporaneously with telomere length assessment, educational markers, SES in childhood and SES over the preceding twenty years. We found mixed evidence for an association between SES and telomere length. In 35-year-olds, many of the education and childhood SES measures were associated with telomere length, i.e. those in poorer circumstances had shorter telomeres, as was intergenerational social mobility, but not accumulated disadvantage. A crude estimate showed that, at the same chronological age, social renters, for example, were nine years (biologically) older than home owners. No consistent associations were apparent in those aged 55 or 75. There is evidence of an association between SES and telomere length, but only in younger adults and most strongly using education and childhood SES measures. These results may reflect that childhood is a sensitive period for telomere attrition. The cohort differences are possibly the result of survival bias suppressing the SES-telomere association; cohort effects with regard different experiences of SES; or telomere possibly being a less effective marker of biological ageing at older ages

    Longitudinal blood biomarker trajectories in preclinical Alzheimer's disease

    Get PDF
    INTRODUCTION: Plasma biomarkers are altered years prior to Alzheimer's disease (AD) clinical onset. METHODS: We measured longitudinal changes in plasma amyloid-beta (Aβ)42/40 ratio, pTau181, pTau231, neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) in a cohort of older adults at risk of AD (n = 373 total, n = 229 with Aβ and tau positron emission tomography [PET] scans) considering genetic and demographic factors as possible modifiers of these markers' progression. RESULTS: Aβ42/40 ratio concentrations decreased, while NfL and GFAP values increased over the 4-year follow-up. Apolipoprotein E (APOE) ε4 carriers showed faster increase in plasma pTau181 than non-carriers. Older individuals showed a faster increase in plasma NfL, and females showed a faster increase in plasma GFAP values. In the PET subsample, individuals both Aβ-PET and tau-PET positive showed faster plasma pTau181 and GFAP increase compared to PET-negative individuals. DISCUSSION: Plasma markers can track biological change over time, with plasma pTau181 and GFAP markers showing longitudinal change in individuals with preclinical AD. HIGHLIGHTS: Longitudinal increase of plasma pTau181 and glial fibrillary acidic protein (GFAP) can be measured in the preclinical phase of AD. Apolipoprotein E ε4 carriers experience faster increase in plasma pTau181 over time than non-carriers. Female sex showed accelerated increase in plasma GFAP over time compared to males. Aβ42/40 and pTau231 values are already abnormal at baseline in individuals with both amyloid and tau PET burden

    Elevated Ratio of Urinary Metabolites of Thromboxane and Prostacyclin Is Associated with Adverse Cardiovascular Events in ADAPT

    Get PDF
    Results from prevention trials, including the Alzheimer's Disease Anti-inflammatory Prevention Trial (ADAPT), have fueled discussion about the cardiovascular (CV) risks associated with non-steroidal anti-inflammatory drugs (NSAIDs). We tested the hypotheses that (i) adverse CV events reported among ADAPT participants (aged 70 years and older) are associated with increased ratio of urine 11-dehydrothromboxane B2 (Tx-M) to 2′3-donor–6-keto-PGF1 (PGI-M) attributable to NSAID treatments; (ii) coincident use of aspirin (ASA) would attenuate NSAID-induced changes in Tx-M/PGI-M ratio; and (iii) use of NSAIDs and/or ASA would not alter urine or plasma concentrations of F2-isoprostanes (IsoPs), in vivo biomarkers of free radical damage. We quantified urine Tx-M and PGI-M, and urine and plasma F2-IsoPs from 315 ADAPT participants using stable isotope dilution assays with gas chromatography/mass spectrometry, and analyzed these data by randomized drug assignment and self-report compliance as well as ASA use. Adverse CV events were significantly associated with higher urine Tx-M/PGI-M ratio, which seemed to derive mainly from lowered PGI-M. Participants taking ASA alone had reduced urine Tx-M/PGI-M compared to no ASA or NSAID; however, participants taking NSAIDs plus ASA did not have reduced urine Tx-M/PGI-M ratio compared to NSAIDs alone. Neither NSAID nor ASA use altered plasma or urine F2-IsoPs. These data suggest a possible mechanism for the increased risk of CV events reported in ADAPT participants assigned to NSAIDs, and suggest that the changes in the Tx-M/PGI-M ratio was not substantively mitigated by coincident use of ASA in individuals 70 years or older
    corecore