111 research outputs found
Loss of Cx43 in Murine Sertoli Cells Leads to Altered Prepubertal Sertoli Cell Maturation and Impairment of the Mitosis-Meiosis Switch.
Male factor infertility is a problem in today's society but many underlying causes are still unknown. The generation of a conditional Sertoli cell (SC)-specific connexin 43 (Cx43) knockout mouse line (SCCx43KO) has provided a translational model. Expression of the gap junction protein Cx43 between adjacent SCs as well as between SCs and germ cells (GCs) is known to be essential for the initiation and maintenance of spermatogenesis in different species and men. Adult SCCx43KO males show altered spermatogenesis and are infertile. Thus, the present study aims to identify molecular mechanisms leading to testicular alterations in prepubertal SCCx43KO mice. Transcriptome analysis of 8-, 10- and 12-day-old mice was performed by next-generation sequencing (NGS). Additionally, candidate genes were examined by qRT-PCR and immunohistochemistry. NGS revealed many significantly differentially expressed genes in the SCCx43KO mice. For example, GCspecific genes were mostly downregulated and found to be involved in meiosis and spermatogonial differentiation (e.g., Dmrtb1, Sohlh1). In contrast, SC-specific genes implicated in SC maturation and proliferation were mostly upregulated (e.g., Amh, Fshr). In conclusion, Cx43 in SCs appears to be required for normal progression of the first wave of spermatogenesis, especially for the mitosis-meiosis switch, and also for the regulation of prepubertal SC maturation
Histamine 2 Receptor Agonism and Histamine 4 Receptor Antagonism Ameliorate Inflammation in a Model of Psoriasis
Psoriasis is a chronic inflammatory skin disorder characterized by hyperproliferative keratinocytes and immune cell infiltration into the skin, often accompanied by itch. Histamine, acting via histamine 1–4 receptors, is known to modulate immune responses in the skin and to induce itch. The aim of this study was to test the role of histamine 2 receptors and histamine 4 receptors in the imiquimod-induced psoriasis-like skin inflammation model. BALB/c mice were treated intraperitoneally with amthamine (histamine 2 receptor agonist), JNJ-39758979 (histamine 4 receptor antagonist), a combination of both, or vehicle twice daily in a preventive manner. Imiquimod was applied once daily onto the back skin for 10 consecutive days. Stimulation of histamine 2 receptors and blockade of histamine 4 receptors ameliorated imiquimod-induced skin inflammation. The combination of amthamine and JNJ-39758979 reduced skin inflammation even more pronounced, diminished epidermal hyperproliferation, and inhibited spontaneous scratching behaviour. A combination of histamine 2 receptor agonist and histamine 4 receptor antagonists could represent a new strategy for the treatment of psoriasis
Analysis of connexin 43, connexin 45 and N-cadherin in the human sertoli cell line FS1 and the human seminoma-like cell line TCam-2 in comparison with human testicular biopsies
Background: Germ cell tumors are relatively common in young men. They derive from a non-invasive precursor, called germ cell neoplasia in situ, but the exact pathogenesis is still unknown. Thus, further understanding provides the basis for diagnostics, prognostics and therapy and is therefore paramount. A recently developed cell culture model consisting of human FS1 Sertoli cells and human TCam-2 seminoma-like cells offers new opportunities for research on seminoma. Since junctional proteins within the seminiferous epithelium are involved in cell organization, differentiation and proliferation, they represent interesting candidates for investigations on intercellular adhesion and communication in context with neoplastic progression. Methods: FS1 and TCam-2 cells were characterized regarding gap-junction-related connexin 43 (Cx43) and connexin 45 (Cx45), and adherens-junction-related N-cadherin using microarray, PCR, Western blot, immunocytochemistry and immunofluorescence. Results were compared to human testicular biopsies at different stages of seminoma development via immunohistochemistry to confirm the cell lines’ representativeness. Furthermore, dye-transfer measurements were performed to investigate functional cell coupling. Results: Cx43, Cx45 and N-cadherin mRNA and protein were generally detectable in both cell lines via qualitative RT-PCR and Western blot. Immunocytochemistry and immunofluorescence revealed a mainly membrane-associated expression of N-cadherin in both cell lines, but gene expression values were higher in FS1 cells. Cx43 expression was also membrane-associated in FS1 cells but barely detectable in TCam-2 cells. Accordingly, a high gene expression value of Cx43 was measured for FS1 and a low value for TCam-2 cells. Cx45 was primary located in the cytoplasm of FS1 and TCam-2 cells and revealed similar low to medium gene expression values in both cell lines. Overall, results were comparable with corresponding biopsies. Additionally, both FS1 and TCam-2 cells showed dye diffusion into neighboring cells. Conclusion: The junctional proteins Cx43, Cx45 and N-cadherin are expressed in FS1 and TCam-2 cells at mRNA and/or protein level in different amounts and localizations, and cells of both lines are functionally coupled among each other. Concerning the expression of these junctional proteins, FS1 and TCam-2 cells are largely representative for Sertoli and seminoma cells, respectively. Thus, these results provide the basis for further coculture experiments evaluating the role of junctional proteins in context with seminoma progression
Vascularization and biocompatibility of poly(ε-caprolactone) fiber mats for rotator cuff tear repair
Rotator cuff tear is the most frequent tendon injury in the adult population. Despite current improvements in surgical techniques and the development of grafts, failure rates following tendon reconstruction remain high. New therapies, which aim to restore the topology and functionality of the interface between muscle, tendon and bone, are essentially required. One of the key factors for a successful incorporation of tissue engineered constructs is a rapid ingrowth of cells and tissues, which is dependent on a fast vascularization. The dorsal skinfold chamber model in female BALB/cJZtm mice allows the observation of microhemodynamic parameters in repeated measurements in vivo and therefore the description of the vascularization of different implant materials. In order to promote vascularization of implant material, we compared a porous polymer patch (a commercially available porous polyurethane based scaffold from Biomerix™) with electrospun polycaprolactone (PCL) fiber mats and chitosan-graft-PCL coated electrospun PCL (CS-g-PCL) fiber mats in vivo. Using intravital fluorescence microscopy microcirculatory parameters were analyzed repetitively over 14 days. Vascularization was significantly increased in CS-g-PCL fiber mats at day 14 compared to the porous polymer patch and uncoated PCL fiber mats. Furthermore CS-g-PCL fiber mats showed also a reduced activation of immune cells. Clinically, these are important findings as they indicate that the CS-g-PCL improves the formation of vascularized tissue and the ingrowth of cells into electrospun PCL scaffolds. Especially the combination of enhanced vascularization and the reduction in immune cell activation at the later time points of our study points to an improved clinical outcome after rotator cuff tear repair. © 2020 Gniesmer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
In vivo analysis of vascularization and biocompatibility of electrospun polycaprolactone fibre mats in the rat femur chamber
In orthopaedic medicine, connective tissues are often affected by traumatic or degenerative injuries, and surgical intervention is required. Rotator cuff tears are a common cause of shoulder pain and disability among adults. The development of graft materials for bridging the gap between tendon and bone after chronic rotator cuff tears is essentially required. The limiting factor for the clinical success of a tissue engineering construct is a fast and complete vascularization of the construct. Otherwise, immigrating cells are not able to survive for a longer period of time, resulting in the failure of the graft material. The femur chamber allows the observation of microhaemodynamic parameters inside implants located in close vicinity to the femur in repeated measurements in vivo. We compared a porous polymer patch (a commercially available porous polyurethane-based scaffold from Biomerix™) with electrospun polycaprolactone (PCL) fibre mats and chitosan (CS)-graft-PCL modified electrospun PCL (CS-g-PCL) fibre mats in vivo. By means of intravital fluorescence microscopy, microhaemodynamic parameters were analysed repetitively over 20 days at intervals of 3 to 4 days. CS-g-PCL modified fibre mats showed a significantly increased vascularization at Day 10 compared with Day 6 and at Day 14 compared with the porous polymer patch and the unmodified PCL fibre mats at the same day. These results could be verified by histology. In conclusion, a clear improvement in terms of vascularization and biocompatibility is achieved by graft-copolymer modification compared with the unmodified material. © 2019 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Lt
Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy.
Establishment of an in vivo small animal model of human tumor and human immune system interaction would enable preclinical investigations into the mechanisms underlying cancer immunotherapy. To this end, nonobese diabetic (NOD).Cg- PrkdcscidIL2rgtm1Wjl/Sz (null; NSG) mice were transplanted with human (h)CD34+ hematopoietic progenitor and stem cells, which leads to the development of human hematopoietic and immune systems [humanized NSG (HuNSG)]. HuNSG mice received human leukocyte antigen partially matched tumor implants from patient-derived xenografts [PDX; non-small cell lung cancer (NSCLC), sarcoma, bladder cancer, and triple-negative breast cancer (TNBC)] or from a TNBC cell line-derived xenograft (CDX). Tumor growth curves were similar in HuNSG compared with nonhuman immune-engrafted NSG mice. Treatment with pembrolizumab, which targets programmed cell death protein 1, produced significant growth inhibition in both CDX and PDX tumors in HuNSG but not in NSG mice. Finally, inhibition of tumor growth was dependent on hCD8+ T cells, as demonstrated by antibody-mediated depletion. Thus, tumor-bearing HuNSG mice may represent an important, new model for preclinical immunotherapy research.
FASEB J 2018 Mar; 32(3):1537-1549
Recommended from our members
Reference Gene Validation for RT-qPCR, a Note on Different Available Software Packages
Background: An appropriate normalization strategy is crucial for data analysis from real time reverse transcription polymerase chain reactions (RT-qPCR). It is widely supported to identify and validate stable reference genes, since no single biological gene is stably expressed between cell types or within cells under different conditions. Different algorithms exist to validate optimal reference genes for normalization. Applying human cells, we here compare the three main methods to the online available RefFinder tool that integrates these algorithms along with R-based software packages which include the NormFinder and GeNorm algorithms. Results: 14 candidate reference genes were assessed by RT-qPCR in two sample sets, i.e. a set of samples of human testicular tissue containing carcinoma in situ (CIS), and a set of samples from the human adult Sertoli cell line (FS1) either cultured alone or in co-culture with the seminoma like cell line (TCam-2) or with equine bone marrow derived mesenchymal stem cells (eBM-MSC). Expression stabilities of the reference genes were evaluated using geNorm, NormFinder, and BestKeeper. Similar results were obtained by the three approaches for the most and least stably expressed genes. The R-based packages NormqPCR, SLqPCR and the NormFinder for R script gave identical gene rankings. Interestingly, different outputs were obtained between the original software packages and the RefFinder tool, which is based on raw Cq values for input. When the raw data were reanalysed assuming 100% efficiency for all genes, then the outputs of the original software packages were similar to the RefFinder software, indicating that RefFinder outputs may be biased because PCR efficiencies are not taken into account. Conclusions: This report shows that assay efficiency is an important parameter for reference gene validation. New software tools that incorporate these algorithms should be carefully validated prior to use
Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission
NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (similar to 25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available
Connexin 43: its regulatory role in testicular junction dynamics and spermatogenesis
Spermatogenesis is an intensely regulated process of germ cell development which takes place in the seminiferous tubules of the testis. In addition to known endocrine and autocrine/paracrine signaling pathways, there is now strong evidence that direct intercellular communication via gap junction channels and their specific connexins represents an important mechanism in the regulation of spermatogenesis. Another possibility is that connexins may indirectly regulate the spermatogenic process through modulation of tight and adherens junction proteins, further main structural components of the Sertoli-Sertoli junctional complexes at the blood-testis barrier site. The present review is focused on connexin 43 and updates its possible roles and functions in testicular junction dynamics and in the initiation and maintenance of spermatogenesis. In addition, testicular phenotypes of recently generated (1) conventional connexin 43 knockout mice, (2) connexin 43 knockin mice and (3) transgenic mice exhibiting a cell-specific (conditional) connexin 43 knockout will be discussed
- …