10 research outputs found

    Deletions of Immunoglobulin heavy chain and T cell receptor gene regions are uniquely associated with lymphoid blast transformation of chronic myeloid leukemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic myelogenous leukemia (CML) results from the neoplastic transformation of a haematopoietic stem cell. The hallmark genetic abnormality of CML is a chimeric <it>BCR/ABL1 </it>fusion gene resulting from the Philadelphia chromosome rearrangement t(9;22)(q34;q11). Clinical and laboratory studies indicate that the <it>BCR/ABL1 </it>fusion protein is essential for initiation, maintenance and progression of CML, yet the event(s) driving the transformation from chronic phase to blast phase are poorly understood.</p> <p>Results</p> <p>Here we report multiple genome aberrations in a collection of 78 CML and 14 control samples by oligonucleotide array comparative genomic hybridization. We found a unique signature of genome deletions within the immunoglobulin heavy chain (<it>IGH</it>) and T cell receptor regions (<it>TCR</it>), frequently accompanied by concomitant loss of sequences within the short arm regions of chromosomes 7 and 9, including <it>IKZF1</it>, <it>HOXA7</it>, <it>CDKN2A/2B</it>, <it>MLLT3</it>, <it>IFNA/B</it>, <it>RNF38</it>, <it>PAX5</it>, <it>JMJD2C </it>and <it>PDCD1LG2 </it>genes.</p> <p>Conclusions</p> <p>None of these genome losses were detected in any of the CML samples with myeloid transformation, chronic phase or controls, indicating that their presence is obligatory for the development of a malignant clone with a lymphoid phenotype. Notably, the coincidental deletions at <it>IGH </it>and <it>TCR </it>regions appear to precede the loss of <it>IKZF1 </it>and/or <it>p16 </it>genes in CML indicating a possible involvement of RAG in these deletions.</p

    Human herpesvirus 6 integrates within telomeric regions as evidenced by five different chromosomal Sites

    No full text
    Fluorescent in situ hybridization (FISH) was used to investigate the chromosomal integration sites of human herpesvirus 6 (HHV-6) in phytohemagglutinin-stimulated leukocytes and B lymphocytes from Epstein–Barr virus transformed lymphoblastoid cell lines (LCLs). Five different chromosomal integration sites were found in nine individuals. Only one site was identified in each individual, each site was in the vicinity of the telomeric region and was on either the p or q arm of only one of the two chromosome homologues. The sites were 9q34.3, 10q26.3, 11p15.5, 17p13.3, and 19q 13.4, of which three have not been previously identified. For 9q34.3 the site of integration was further mapped using a locus-specific probe for 9q34.3 together with a pan-telomeric probe and both co-localized with the HHV-6 signal. Similarly an arm-specific telomeric probe for 19q co-localized with the HHV-6 signal. It was therefore concluded that the site of integration is actually within the telomere. The number of viral DNA copies/cell was calculated in blood, LCL cells and hair follicles and was one or more in every case for each of the nine individuals. This result was confirmed by FISH where 100% of cells gave an HHV-6 signal. These findings add to previous reports suggesting that integrated HHV-6 DNA is found in every cell in the body and transmitted vertically. Finally, including our data, worldwide seven different chromosomal sites of HHV-6 integration have now been identified. Large epidemiological studies of chromosomal integration are required to identify further telomeric sites, geographical or racial variation and possible clinical consequences

    Array CGH analysis at 60kb resolution of CML samples at advanced stage of disease

    No full text
    In spite of the universal presence of the BCR/ABL1 fusion gene, chronic myelogenous leukemia (CML) shows remarkable clinical and genetic diversity. The consequences of der(9)t(9;22) chromosome deletions, associated with poor survival, as well as the mechanism behind their formation remain unclear, as does our understanding of the molecular events driving the disease evolution. The presence of these deletions fuelled the expectations that cryptic genome-wide aberrations may be accountable for the disease progression. Following a comprehensive BAC aCGH analysis of 48 CML samples (Brazma et al., Genes, Chromosomes &amp; Cancer, 2007 in press) we report high-resolution oligo-nucleotide array study of a further 30 CML accelerated/ blast phase samples. We were unable to confirm the high frequency of particular single BAC imbalances (CNVs), reported both by ourselves and others, possibly due to the manufacturer’s array selection strategy. Never-the-less some of the CNVs and a wealth of new imbalances were obtained at 60kb resolution. It was possible to build a precise map of the amplicon affecting the sequences flanking the 3' ABL1 breakpoint site, which include the LAMC3 and NUP214 genes. The presence of this amplicon was associated with therapy resistance. When assessed, at a resolution of 60 kb, the deletions of the regions flanking the ABL1/BCR breakpoint showed novel features: 1. the genome loss affects preferentially both flanking sites as seen in 5 of the 6 ‘deleted’ samples and 2. the 120kb deletion identified is the smallest recorded so far. Most of the major cytogenetic features of the samples were confirmed and a number of cryptic genome imbalances were detected, from 120kb to 10Mb in size, involving regions rich in genes, some already implicated in the pathogenesis of CML. Finally, recurrent micro aberrations of several adjacent oligo-nucleotides affecting non-coding sequences were detected in as many as 2/3 of the samples

    Myeloproliferative neoplasm with ETV6-ABL1: a case report and literature review

    Get PDF
    ETV6-ABL1 is a rare gene fusion with oncogenic properties, reported so far in 28 patients presenting a variety of haematological malignancies associated with clinical outcome, including chronic myeloid leukaemia (CML), acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL) and chronic myeloproliferative neoplasm (cMPN). Here we report on a 46-year-old female who presented with Philadelphia negative CML, positive for the ETV6-ABL1 fusion. Whole genome screening carried out with oligonucleotide arrays showed a subtle loss at 12p13 and cryptic imbalances within the 9q34.3 region in a highly unstable genome. FISH mapping with custom BAC probes identified two breakpoints 5 Mb apart within the 9q34 region, together with a break at 12p13. While FISH with commercial BCR-ABL1 probes failed to detect any ABL1 changes, the ETV6 break-apart probe conclusively identified the ETV6-ABL1 fusion thus determining the probe's role as the primary diagnostic FISH test for this chimeric oncogene.In addition, we confirm the association of the ETV6-ABL1 fusion with imatinib resistance reported so far in three other patients, while recording excellent response to the 2nd generation tyrosine kinase inhibitor (TKI) nilotinib. In summary, we highlight the value of ETV6 FISH as a diagnostic test and the therapy resistance of ETV6-ABL1 positive disorders to imatinib

    Does BCR/ABL1 positive acute myeloid leukaemia exist?

    No full text
    The BCR/ABL1 fusion gene, usually carried by the Philadelphia chromosome (Ph) resulting from t(9;22)(q34;q11) or variants, is pathognomonic for chronic myeloid leukaemia (CML). It is also occasionally found in acute lymphoblastic leukaemia (ALL) mostly in adults and rarely in de novo acute myeloid leukaemia (AML). Array Comparative Genomic Hybridization (aCGH) was used to study six Ph(+)AML, three bi-lineage and four Ph(+)ALL searching for specific genomic profiles. Surprisingly, loss of the IKZF1 and/or CDKN2A genes, the hallmark of Ph(+)ALL, were recurrent findings in Ph(+)AML and accompanied cryptic deletions within the immunoglobulin and T cell receptor genes. The latter two losses have been shown to be part of ‘hot spot’ genome imbalances associated with BCR/ ABL1 positive pre-B lymphoid phenotype in CML and Ph(+)ALL. We applied Significance Analysis of Microarrays (SAM) to data from the ‘hot spot’ regions to the Ph(+)AML and a further 40 BCR/ABL1(+) samples looking for differentiating features. After exclusion of the most dominant markers, SAM identified aberrations unique to de novo Ph(+)AML that involved relevant genes. While the biological and clinical significance of this specific genome signature remains to be uncovered, the unique loss within the immunoglobulin genes provides a simple test to enable the differentiation of clinically similar de novo Ph(+) AML and myeloid blast crisis of CML

    Transmission of integrated human herpesvirus 6 through stem cell transplantation: implications for laboratory diagnosis

    No full text
    We identified a stem cell donor with chromosomally integrated human herpesvirus (HHV)–6 and monitored the recipient for HHV-6 after transplantation. The appearance and subsequent increase in HHV-6 load paralleled engraftment and an increase in white blood cell count. Fluorescent in situ hybridization analysis showed integrated HHV-6 on chromosome band 17p13.3 in the donor and in the recipient after transplantation but not in the recipient before transplantation. The increase in viral load due to the genetic transmission of integrated HHV-6 could have been misinterpreted as substantial active infection and, thus, led to the administration of toxic antiviral therapy. We suggest that the confounding influence of integration be considered in laboratory investigations associating HHV-6 with disease
    corecore