4 research outputs found

    Using Existing Wi-Fi networks to Provide Information on Occupancy and Exploitation of Educational Facilities using at Delft University of Technology

    No full text
    This executive summary provides an overview of the work done by project in_sight for the TU Delft MSc Geomatics for the Built Environment. The research subject is the usage of WiFi monitoring data to calculate the occupation of the TU Delft campus in order to determine the exploitation of the educational facilities.Architecture and The Built EnvironmentGeo-information TechnologyGeomatics for the Built Environmentin_sigh

    Challenges in flying quadrotor unmanned aerial vehicle for 3D indoor reconstruction

    No full text
    Three-dimensional modelling plays a vital role in indoor 3D tracking, navigation, guidance and emergency evacuation. Reconstruction of indoor 3D models is still problematic, in part, because indoor spaces provide challenges less-documented than their outdoor counterparts. Challenges include obstacles curtailing image and point cloud capture, restricted accessibility and a wide array of indoor objects, each with unique semantics. Reconstruction of indoor environments can be achieved through a photogrammetric approach, e.g. by using image frames, aligned using recurring corresponding image points (CIP) to build coloured point clouds. Our experiments were conducted by flying a QUAV in three indoor environments and later reconstructing 3D models which were analysed under different conditions. Point clouds and meshes were created using Agisoft PhotoScan Professional. We concentrated on flight paths from two vantage points: 1) safety and security while flying indoors and 2) data collection needed for reconstruction of 3D models. We surmised that the main challenges in providing safe flight paths are related to the physical configuration of indoor environments, privacy issues, the presence of people and light conditions. We observed that the quality of recorded video used for 3D reconstruction has a high dependency on surface materials, wall textures and object types being reconstructed. Our results show that 3D indoor reconstruction predicated on video capture using a QUAV is indeed feasible, but close attention should be paid to flight paths and conditions ultimately influencing the quality of 3D models. Moreover, it should be decided in advance which objects need to be reconstructed, e.g. bare rooms or detailed furniture.Urban Data ScienceOLD Production & Deliver

    In_sight: Using Existing Wi-Fi networks to Provide Information on Occupancy and Exploitation of Educational Facilities using at Delft University of Technology

    No full text
    The distribution of people in buildings, the occupancy of lecture-, work- and study places and the accessibility of facilities are essential information at university campuses who have to cope with limited and even shrinking budgets and huge, rising real estate costs. Only little insight is gained in both occupancy and movement patterns with traditional counting techniques and user-based questionnaires. Management teams state that rooms and facilities are hardly used, though staff and students complain about overcrowded facilities and limited flexibility. Actual and accurate data on a 24/7 scale with high-granularity is missing.In general Facility- and Asset Management lacks efficient methods for realtime, comprehensive and high-granularity information of location, capacity and use of tangible and intangible assets. Asset management could benefit from more detailed, more accurate and longitudinal data on assets, providing more insight into efficiency and effectiveness on different levels of scale through time.Existing technologies could provide a platform delivering those required insights. Navigation- and communication technologies such as GNSS, Wi-Fi, Bluetooth, RFID can be used to ‘locate’ users, estimate intensities and reveal patterns of movement and patterns of use. For Asset management indoor localisation is essential

    In_sight: Using Existing Wi-Fi networks to Provide Information on Occupancy and Exploitation of Educational Facilities using at Delft University of Technology

    No full text
    The distribution of people in buildings, the occupancy of lecture-, work- and study places and the accessibility of facilities are essential information at university campuses who have to cope with limited and even shrinking budgets and huge, rising real estate costs. Only little insight is gained in both occupancy and movement patterns with traditional counting techniques and user-based questionnaires. Management teams state that rooms and facilities are hardly used, though staff and students complain about overcrowded facilities and limited flexibility. Actual and accurate data on a 24/7 scale with high-granularity is missing.In general Facility- and Asset Management lacks efficient methods for realtime, comprehensive and high-granularity information of location, capacity and use of tangible and intangible assets. Asset management could benefit from more detailed, more accurate and longitudinal data on assets, providing more insight into efficiency and effectiveness on different levels of scale through time.Existing technologies could provide a platform delivering those required insights. Navigation- and communication technologies such as GNSS, Wi-Fi, Bluetooth, RFID can be used to ‘locate’ users, estimate intensities and reveal patterns of movement and patterns of use. For Asset management indoor localisation is essential.OLD Urban DesignOLD Department of GIS Technolog
    corecore