5,579 research outputs found
Integrability of the Minimal Strain Equations for the Lapse and Shift in 3+1 Numerical Relativity
Brady, Creighton and Thorne have argued that, in numerical relativity
simulations of the inspiral of binary black holes, if one uses lapse and shift
functions satisfying the ``minimal strain equations'' (MSE), then the
coordinates might be kept co-rotating, the metric components would then evolve
on the very slow inspiral timescale, and the computational demands would thus
be far smaller than for more conventional slicing choices. In this paper, we
derive simple, testable criteria for the MSE to be strongly elliptic, thereby
guaranteeing the existence and uniqueness of the solution to the Dirichlet
boundary value problem. We show that these criteria are satisfied in a test-bed
metric for inspiraling binaries, and we argue that they should be satisfied
quite generally for inspiraling binaries. If the local existence and uniqueness
that we have proved holds globally, then, for appropriate boundary values, the
solution of the MSE exhibited by Brady et. al. (which tracks the inspiral and
keeps the metric evolving slowly) will be the unique solution and thus should
be reproduced by (sufficiently accurate and stable) numerical integrations.Comment: 6 pages; RevTeX; submitted to Phys. Rev. D15. Technical issue of the
uniqueness of the solution to the Dirichlet problem clarified. New subsection
on the nature of the boundary dat
Numerical investigation of black hole interiors
Gravitational perturbations which are present in any realistic stellar
collapse to a black hole, die off in the exterior of the hole, but experience
an infinite blueshift in the interior. This is believed to lead to a slowly
contracting lightlike scalar curvature singularity, characterized by a
divergence of the hole's (quasi-local) mass function along the inner horizon.
The region near the inner horizon is described to great accuracy by a plane
wave spacetime. While Einstein's equations for this metric are still too
complicated to be solved in closed form it is relatively simple to integrate
them numerically.
We find for generic regular initial data the predicted mass inflation type
null singularity, rather than a spacelike singularity. It thus seems that mass
inflation indeed represents a generic self-consistent picture of the black hole
interior.Comment: 6 pages LaTeX, 3 eps figure
Gauge symmetry breaking on orbifolds
We discuss a new method for gauge symmetry breaking in theories with one
extra dimension compactified on the orbifold S^1/Z_2. If we assume that fields
and their derivatives can jump at the orbifold fixed points, we can implement a
generalized Scherk-Schwarz mechanism that breaks the gauge symmetry. We show
that our model with discontinuous fields is equivalent to another with
continuous but non periodic fields; in our scheme localized lagrangian terms
for bulk fields appear.Comment: 6 pages, 2 figures. Talk given at the XXXVIIth Rencontres de Moriond,
"Electroweak interactions and unified theories", Les Arcs, France, 9-16 Mar
2002. Minor changes, one reference adde
Quasi-normal modes of Schwarzschild-de Sitter black holes
The low-laying frequencies of characteristic quasi-normal modes (QNM) of
Schwarzschild-de Sitter (SdS) black holes have been calculated for fields of
different spin using the 6th-order WKB approximation and the approximation by
the P\"{o}shl-Teller potential. The well-known asymptotic formula for large
is generalized here on a case of the Schwarzchild-de Sitter black hole. In the
limit of the near extreme term the results given by both methods are
in a very good agreement, and in this limit fields of different spin decay with
the same rate.Comment: 9 pages, 1 ancillary Mathematica(R) noteboo
Decay of charged scalar field around a black hole: quasinormal modes of R-N, R-N-AdS and dilaton black holes
It is well known that the charged scalar perturbations of the
Reissner-Nordstrom metric will decay slower at very late times than the neutral
ones, thereby dominating in the late time signal. We show that at the stage of
quasinormal ringing, on the contrary, the neutral perturbations will decay
slower for RN, RNAdS and dilaton black holes. The QN frequencies of the nearly
extreme RN black hole have the same imaginary parts (damping times) for charged
and neutral perturbations. An explanation of this fact is not clear but,
possibly, is connected with the Choptuik scaling.Comment: 10 pages, LaTeX, 4 figures, considerable changes made and wrong
interpretation of computations correcte
Self-Similar Collapse of Scalar Field in Higher Dimensions
This paper constructs continuously self-similar solution of a spherically
symmetric gravitational collapse of a scalar field in n dimensions. The
qualitative behavior of these solutions is explained, and closed-form answers
are provided where possible. Equivalence of scalar field couplings is used to
show a way to generalize minimally coupled scalar field solutions to the model
with general coupling.Comment: RevTex 3.1, 15 pages, 3 figures; references adde
Are HIV smartphone apps and online interventions fit for purpose?
Sexual health is an under-explored area of Human-Computer Interaction (HCI), particularly sexually transmitted infections such as HIV. Due to the stigma associated with these infections, people are often motivated to seek information online. With the rise of smartphone and web apps, there is enormous potential for technology to provide easily accessible information and resources. However, using online information raises important concerns about the trustworthiness of these resources and whether they are fit for purpose. We conducted a review of smartphone and web apps to investigate the landscape of currently available online apps and whether they meet the diverse needs of people seeking information on HIV online. Our functionality review revealed that existing technology interventions have a one-size-fits-all approach and do not support the breadth and complexity of HIV-related support needs. We argue that technology-based interventions need to signpost their offering and provide tailored support for different stages of HIV, including prevention, testing, diagnosis and management
Black hole formation from massive scalar fields
It is shown that there exists a range of parameters in which gravitational
collapse with a spherically symmetric massive scalar field can be treated as if
it were collapsing dust. This implies a criterion for the formation of black
holes depending on the size and mass of the initial field configuration and the
mass of the scalar field.Comment: 11 pages, RevTeX, 3 eps figures. Submitted to Class. Quantum Gra
Continuous Self-Similarity Breaking in Critical Collapse
This paper studies near-critical evolution of the spherically symmetric
scalar field configurations close to the continuously self-similar solution.
Using analytic perturbative methods, it is shown that a generic growing
perturbation departs from the critical Roberts solution in a universal way. We
argue that in the course of its evolution, initial continuous self-similarity
of the background is broken into discrete self-similarity with echoing period
, reproducing the symmetries of the critical
Choptuik solution.Comment: RevTeX 3.1, 28 pages, 5 figures; discussion rewritten to clarify
several issue
- …