8 research outputs found

    Low- and high-resource opinion summarization

    Get PDF
    Customer reviews play a vital role in the online purchasing decisions we make. The reviews express user opinions that are useful for setting realistic expectations and uncovering important details about products. However, some products receive hundreds or even thousands of reviews, making them time-consuming to read. Moreover, many reviews contain uninformative content, such as irrelevant personal experiences. Automatic summarization offers an alternative – short text summaries capturing the essential information expressed in reviews. Automatically produced summaries can reflect overall or particular opinions and be tailored to user preferences. Besides being presented on major e-commerce platforms, home assistants can also vocalize them. This approach can improve user satisfaction by assisting in making faster and better decisions. Modern summarization approaches are based on neural networks, often requiring thousands of annotated samples for training. However, human-written summaries for products are expensive to produce because annotators need to read many reviews. This has led to annotated data scarcity where only a few datasets are available. Data scarcity is the central theme of our works, and we propose a number of approaches to alleviate the problem. The thesis consists of two parts where we discuss low- and high-resource data settings. In the first part, we propose self-supervised learning methods applied to customer reviews and few-shot methods for learning from small annotated datasets. Customer reviews without summaries are available in large quantities, contain a breadth of in-domain specifics, and provide a powerful training signal. We show that reviews can be used for learning summarizers via a self-supervised objective. Further, we address two main challenges associated with learning from small annotated datasets. First, large models rapidly overfit on small datasets leading to poor generalization. Second, it is not possible to learn a wide range of in-domain specifics (e.g., product aspects and usage) from a handful of gold samples. This leads to subtle semantic mistakes in generated summaries, such as ‘great dead on arrival battery.’ We address the first challenge by explicitly modeling summary properties (e.g., content coverage and sentiment alignment). Furthermore, we leverage small modules – adapters – that are more robust to overfitting. As we show, despite their size, these modules can be used to store in-domain knowledge to reduce semantic mistakes. Lastly, we propose a simple method for learning personalized summarizers based on aspects, such as ‘price,’ ‘battery life,’ and ‘resolution.’ This task is harder to learn, and we present a few-shot method for training a query-based summarizer on small annotated datasets. In the second part, we focus on the high-resource setting and present a large dataset with summaries collected from various online resources. The dataset has more than 33,000 humanwritten summaries, where each is linked up to thousands of reviews. This, however, makes it challenging to apply an ‘expensive’ deep encoder due to memory and computational costs. To address this problem, we propose selecting small subsets of informative reviews. Only these subsets are encoded by the deep encoder and subsequently summarized. We show that the selector and summarizer can be trained end-to-end via amortized inference and policy gradient methods

    Few-Shot Learning for Opinion Summarization

    Get PDF
    Opinion summarization is the automatic creation of text reflecting subjective information expressed in multiple documents, such as user reviews of a product. The task is practically important and has attracted a lot of attention. However, due to the high cost of summary production, datasets large enough for training supervised models are lacking. Instead, the task has been traditionally approached with extractive methods that learn to select text fragments in an unsupervised or weakly-supervised way. Recently, it has been shown that abstractive summaries, potentially more fluent and better at reflecting conflicting information, can also be produced in an unsupervised fashion. However, these models, not being exposed to actual summaries, fail to capture their essential properties. In this work, we show that even a handful of summaries is sufficient to bootstrap generation of the summary text with all expected properties, such as writing style, informativeness, fluency, and sentiment preservation. We start by training a conditional Transformer language model to generate a new product review given other available reviews of the product. The model is also conditioned on review properties that are directly related to summaries; the properties are derived from reviews with no manual effort. In the second stage, we fine-tune a plug-in module that learns to predict property values on a handful of summaries. This lets us switch the generator to the summarization mode. We show on Amazon and Yelp datasets that our approach substantially outperforms previous extractive and abstractive methods in automatic and human evaluation.Comment: EMNLP 202

    Small Language Models Improve Giants by Rewriting Their Outputs

    Full text link
    Large language models (LLMs) have demonstrated impressive few-shot learning capabilities, but they often underperform compared to fine-tuned models on challenging tasks. Furthermore, their large size and restricted access only through APIs make task-specific fine-tuning impractical. Moreover, LLMs are sensitive to different aspects of prompts (e.g., the selection and order of demonstrations) and can thus require time-consuming prompt engineering. In this light, we propose a method to correct LLM outputs without relying on their weights. First, we generate a pool of candidates by few-shot prompting an LLM. Second, we refine the LLM-generated outputs using a smaller model, the LM-corrector (LMCor), which is trained to rank, combine and rewrite the candidates to produce the final target output. Our experiments demonstrate that even a small LMCor model (250M) substantially improves the few-shot performance of LLMs (62B) across diverse tasks. Moreover, we illustrate that the LMCor exhibits robustness against different prompts, thereby minimizing the need for extensive prompt engineering. Finally, we showcase that the LMCor can be seamlessly integrated with different LLMs at inference time, serving as a plug-and-play module to improve their performance

    Efficient Few-Shot Fine-Tuning for Opinion Summarization

    Full text link
    Abstractive summarization models are typically pre-trained on large amounts of generic texts, then fine-tuned on tens or hundreds of thousands of annotated samples. However, in opinion summarization, large annotated datasets of reviews paired with reference summaries are not available and would be expensive to create. This calls for fine-tuning methods robust to overfitting on small datasets. In addition, generically pre-trained models are often not accustomed to the specifics of customer reviews and, after fine-tuning, yield summaries with disfluencies and semantic mistakes. To address these problems, we utilize an efficient few-shot method based on adapters which, as we show, can easily store in-domain knowledge. Instead of fine-tuning the entire model, we add adapters and pre-train them in a task-specific way on a large corpus of unannotated customer reviews, using held-out reviews as pseudo summaries. Then, fine-tune the adapters on the small available human-annotated dataset. We show that this self-supervised adapter pre-training improves summary quality over standard fine-tuning by 2.0 and 1.3 ROUGE-L points on the Amazon and Yelp datasets, respectively. Finally, for summary personalization, we condition on aspect keyword queries, automatically created from generic datasets. In the same vein, we pre-train the adapters in a query-based manner on customer reviews and then fine-tune them on annotated datasets. This results in better-organized summary content reflected in improved coherence and fewer redundancies.Comment: NAACL Findings 202

    Beyond Opinion Mining: Summarizing Opinions of Customer Reviews

    Full text link
    Customer reviews are vital for making purchasing decisions in the Information Age. Such reviews can be automatically summarized to provide the user with an overview of opinions. In this tutorial, we present various aspects of opinion summarization that are useful for researchers and practitioners. First, we will introduce the task and major challenges. Then, we will present existing opinion summarization solutions, both pre-neural and neural. We will discuss how summarizers can be trained in the unsupervised, few-shot, and supervised regimes. Each regime has roots in different machine learning methods, such as auto-encoding, controllable text generation, and variational inference. Finally, we will discuss resources and evaluation methods and conclude with the future directions. This three-hour tutorial will provide a comprehensive overview over major advances in opinion summarization. The listeners will be well-equipped with the knowledge that is both useful for research and practical applications.Comment: SIGIR Tutorial 202
    corecore