281 research outputs found
Reactive Magnetron Sputtering of ZrO2/Al2O3 Coatings: Alumina Content and Structure Stability
Ternary zirconia-alumina coatings with different compositional ratios, ranging from pure zirconia to 50% alumina content, were deposited by reactive sputtering from two targets, Zr and Al, in argon-oxygen mixtures. The coating composition was controlled by the Zr/Al target power ratio provided by two pulsed-DC power supplies. The coatings were ~1 µm thick and they were deposited on floating potential substrates at a temperature of 650±3K.
XRD indicated that the pure zirconia coatings possessed a monoclinic structure with a grain size of 35-40 nm. Adding alumina to the zirconia coating stabilized the cubic zirconia phase and decreased the grain size to 10-15 nm. The alumina phase in the coatings remained amorphous. The hardness of the nanocomposite structure increased from 11.6±0.5 GPa to 16.1±0.5 GPa for an alumina content of 17%. At higher alumina concentrations, the zirconia phase became amorphous and the hardness decreased to 10-11 GPa.
Structure stability of the zirconia-alumina coatings was studied by measuring the coating structure and hardness after annealing at temperatures up to 1173 K. Pure zirconia (m-ZrO2) coatings had low structure stability; the hardness reached a maximum value of 18±1 GPa after annealing at a temperature of 773-873K; however, at higher annealing temperatures the hardness decreased, reaching a minimum value of 12.3±0.6 GPa after annealing at 1173K. The hardness of the nanocomposite ZrO2/Al2O3 coating with various compositions increased with annealing temperature. The hardness of a coating with an alumina content of 17% reached a high value of 19.2±0.5 GPa after annealing at 1073-1173 K. Measurements of post annealing XRD analyses indicated that the stabilization of the coating structure with c-ZrO2/a-Al2O3 phases is the reason for the higher structure stability. From the analyses of phase stability and hardness before and after annealing, we conclude that adding alumina to the zirconia phase promotes the formation of nanocomposite c-ZrO2/a-Al2O3 coatings with a markedly higher stability than single-phase m-ZrO2.
Highlights:
1. ZrO2/Al2O3 nanocomposite coatings were deposited by co-sputtering from Zr and Al targets.
2. Adding alumina to the zirconia coating stabilized the cubic zirconia phase.
3. ZrO2-17% Al2O3 coatings had a grain size of 10-15 nm and a hardness of 16.1±0.5 GPa.
4. ZrO2/Al2O3 coatings maintained a high hardness after annealing at 1173K with a high value of 19 GPa for alumina content of 17%.
5. The ZrO2/Al2O3 nanocomposite coatings were crack-free after annealing at 1173K
Thermal Stability of Filtered Vacuum Arc Deposited Er2O3 Coatings
Erbium oxide (Er2O3) coatings were deposited using filtered vacuum arc deposition (FVAD) and their structure and thermal stability were studied as a function of fabrication parameters. The coatings were deposited on silicon wafer and tantalum substrates with an arc current of 50 A and a deposition rate of 1.6 ± 0.4 nm/s. The arc was sustained on truncated cone Er cathodes. The influence of oxygen pressure (P= 0.40-0.93 Pa), bias voltage (Vb= -20, -40 or grounded) and substrate temperature (room temperature (RT) or 673K) on film properties was studied before and after post deposition annealing (1273K for 1 hour, at P~ 1.33 Pa). The coatings were characterized using X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Knoop Hardness.
Optical microscope images indicated that the coatings had very low macroparticle concentration on their surface. The macroparticle diameters were less than 2.5 μm. The coatings were composed of only Er2O3 without any metallic phase under all deposition parameters tested. The coatings deposited on RT substrates were XRD amorphous and had a featureless cross-section microstructure. However, the coatings deposited on 673K heated substrates had a C-Er2O3 structure with (222) preferred orientation and weak columnar microstructure. The coating hardness varied with deposition pressure and substrate bias, and reached a maximum value of 10 GPa at P = 0.4 Pa and Vb = -40 V. The post-deposition annealing caused crystallization, and the coatings hardness dropped to 4 GPa with thermal treatment. However, after post-deposition annealing, no peeling or cracking appeared at the coating surface or the interface with the substrate
High quality superconducting niobium films produced by Ultra High Vacuum Cathodic Arc
The vacuum arc is a well-known technique to produce coating with enhanced
adhesion and film density. Many cathodic arc deposition systems are actually in
use in industry and research. They all work under (high) vacuum conditions in
which water vapor pressure is an important source of film contamination,
especially in the pulsed arc mode of operation. Here we present a Cathodic Arc
system working under Ultra High Vacuum conditions (UHVCA). UHVCA has been used
to produce ultra-pure niobium films with excellent structural and electrical
properties at a deposition temperature lower than 100oC. The UHVCA technique
therefore opens new perspectives for all applications requiring ultra-pure
films or, as in the case of Plasma Immersion Ion Implantation, ultra-pure
plasmas.Comment: submitted to AP
20.5 kA current leads for ATLAS Barrel Toroid superconducting magnets
Three pairs of 20.5 kA current leads for the ATLAS Toroid Magnets have been designed, manufactured and tested at Kurchatov Institute. The current leads have a high mechanical reliability and the vacuum tightness under 30 bars of internal pressure. The insulation between the current carrying parts and the mounting flange, the hydraulic connections and the temperature gauges withstand the overvoltage of at least 2 kV. The current leads are fully equipped with diagnostics needed for safety and control. The current leads were tested up to 24 kA. According to CERN's specification they were also tested in the absence of any cooling at very slow current discharge rate (5 A/s) from 20.5 kA to zero without any excessive overheating. Nowadays the current leads are successfully used at the ATLAS Magnet Test Facility at CERN. (6 refs)
ATLAS B0 toroid model coil test at CERN
The ATLAS superconducting magnet system consists of a Barrel Toroid, two End-Cap Toroids and a Central Solenoid. The Barrel Toroid, with overall dimensions of 20-m diameter by 26-m length, is made of eight individual coils symmetrically assembled around the central axis with a warm structure. The system is presently under construction in industry. In order to verify the construction concepts a model coil B0, a 9-m short version of a single Barrel Toroid coil, was built. Since April 2001, an extensive test program is underway at CERN to characterize the mechanical, thermal, electrical and magnetic properties of the coil. The magnet successfully achieved the 20-kA nominal operating current in July 2001. The test program and the main results are reported. (9 refs)
Biofilter aquaponic system for nutrients removal from fresh market wastewater
Aquaponics is a significant wastewater treatment system which refers to the combination of conventional aquaculture (raising aquatic organism) with hydroponics (cultivating plants in water) in a symbiotic environment. This system has a high ability in removing nutrients compared to conventional methods because it is a natural and environmentally friendly system (aquaponics). The current chapter aimed to review the possible application of aquaponics system to treat fresh market wastewater with the intention to highlight the mechanism of phytoremediation occurs in aquaponic system. The literature revealed that aquaponic system was able to remove nutrients in terms of nitrogen and phosphorus
Characterization of Novel Cutaneous Human Papillomavirus Genotypes HPV-150 and HPV-151
DNA from two novel HPV genotypes, HPV-150 and HPV-151, isolated from hair follicles of immuno-competent individuals, was fully cloned, sequenced and characterized. The complete genomes of HPV-150 and HPV-151 are 7,436-bp and 7,386-bp in length, respectively. Both contain genes for at least six proteins, namely E6, E7, E1, E2, L2, L1, as well as a non-coding upstream regulatory region located between the L1 and E6 genes: spanning 416-bp in HPV-150 (genomic positions 7,371 to 350) and 322-bp in HPV-151 (genomic positions 7,213 to 148). HPV-150 and HPV-151 are phylogenetically placed within the Betapapillomavirus genus and are most closely related to HPV-96 and HPV-22, respectively. As in other members of this genus, the intergenic E2-L2 region is very short and does not encode for an E5 gene. Both genotypes contain typical zinc binding domains in their E6 and E7 proteins, but HPV-151 lacks the regular pRb-binding core sequence within its E7 protein. In order to assess the tissue predilection and clinical significance of the novel genotypes, quantitative type-specific real-time PCR assays were developed. The 95% detection limits of the HPV-150 and HPV-151 assays were 7.3 copies/reaction (range 5.6 to 11.4) and 3.4 copies/reaction (range 2.5 to 6.0), respectively. Testing of a representative collection of HPV-associated mucosal and cutaneous benign and malignant neoplasms and hair follicles (total of 540 samples) revealed that HPV-150 and HPV-151 are relatively rare genotypes with a cutaneous tropism. Both genotypes were found in sporadic cases of common warts and SCC and BCC of the skin as single or multiple infections usually with low viral loads. HPV-150 can establish persistent infection of hair follicles in immuno-competent individuals. A partial L1 sequence of a putative novel HPV genotype, related to HPV-150, was identified in a squamous cell carcinoma of the skin obtained from a 64-year old immuno-compromised male patient
Towards a Learning Health System for Symptom Management in Hospice Care
The reuse of real-world symptom monitoring data is essential in improving the quality of hospice care. A framework for achieving this is a Learning Health System, in which the development of a well-defined dataset is essential. This paper discusses the challenges in the design of a comprehensive dataset, focusing on variations in two electronic health record systems and divergent care processes
- …