62 research outputs found
Recommended from our members
Functional magnetic resonance imaging measurements of sound-level encoding in the absence of background scanner noise
Effects of sound level on auditory cortical activation are seen in neuroimaging data. However, factors such as the cortical response to the intense ambient scanner noise and to the bandwidth of the acoustic stimuli will both confound precise quantification and interpretation of such sound-level effects. The present study used temporally "sparse" imaging to reduce effects of scanner noise. To achieve control for stimulus bandwidth, three schemes were compared for sound-level matching across bandwidth: component level, root-mean-square power and loudness. The calculation of the loudness match was based on the model reported by Moore and Glasberg [Acta Acust. 82, 335–345 (1996)]. Ten normally hearing volunteers were scanned using functional magnetic resonance imaging (fMRI) while listening to a 300-Hz tone presented at six different sound levels between 66 and 91 dB SPL and a harmonic-complex tone (F0 = 186 Hz) presented at 65 and 85 dB SPL. This range of sound levels encompassed all three bases of sound-level matching. Activation in the superior temporal gyrus, induced by each of the eight tone conditions relative to a quiet baseline condition, was quantified as to extent and magnitude. Sound level had a small, but significant, effect on the extent of activation for the pure tone, but not for the harmonic-complex tone, while it had a significant effect on the response magnitude for both types of stimulus. Response magnitude increased linearly as a function of sound level for the full range of levels for the pure tone
Amplicon-Dependent CCNE1 Expression Is Critical for Clonogenic Survival after Cisplatin Treatment and Is Correlated with 20q11 Gain in Ovarian Cancer
Genomic amplification of 19q12 occurs in several cancer types including ovarian cancer where it is associated with primary treatment failure. We systematically attenuated expression of genes within the minimally defined 19q12 region in ovarian cell lines using short-interfering RNAs (siRNA) to identify driver oncogene(s) within the amplicon. Knockdown of CCNE1 resulted in G1/S phase arrest, reduced cell viability and apoptosis only in amplification-carrying cells. Although CCNE1 knockdown increased cisplatin resistance in short-term assays, clonogenic survival was inhibited after treatment. Gain of 20q11 was highly correlated with 19q12 amplification and spanned a 2.5 Mb region including TPX2, a centromeric protein required for mitotic spindle function. Expression of TPX2 was highly correlated with gene amplification and with CCNE1 expression in primary tumors. siRNA inhibition of TPX2 reduced cell viability but this effect was not amplicon-dependent. These findings demonstrate that CCNE1 is a key driver in the 19q12 amplicon required for survival and clonogenicity in cells with locus amplification. Co-amplification at 19q12 and 20q11 implies the presence of a cooperative mutational network. These observations have implications for the application of targeted therapies in CCNE1 dependent ovarian cancers
Copy Number Analysis Identifies Novel Interactions Between Genomic Loci in Ovarian Cancer
Ovarian cancer is a heterogeneous disease displaying complex genomic alterations, and consequently, it has been difficult to determine the most relevant copy number alterations with the scale of studies to date. We obtained genome-wide copy number alteration (CNA) data from four different SNP array platforms, with a final data set of 398 ovarian tumours, mostly of the serous histological subtype. Frequent CNA aberrations targeted many thousands of genes. However, high-level amplicons and homozygous deletions enabled filtering of this list to the most relevant. The large data set enabled refinement of minimal regions and identification of rare amplicons such as at 1p34 and 20q11. We performed a novel co-occurrence analysis to assess cooperation and exclusivity of CNAs and analysed their relationship to patient outcome. Positive associations were identified between gains on 19 and 20q, gain of 20q and loss of X, and between several regions of loss, particularly 17q. We found weak correlations of CNA at genomic loci such as 19q12 with clinical outcome. We also assessed genomic instability measures and found a correlation of the number of higher amplitude gains with poorer overall survival. By assembling the largest collection of ovarian copy number data to date, we have been able to identify the most frequent aberrations and their interactions
Deregulation of MYCN, LIN28B and LET7 in a Molecular Subtype of Aggressive High-Grade Serous Ovarian Cancers
Molecular subtypes of serous ovarian cancer have been recently described. Using data from independent datasets including over 900 primary tumour samples, we show that deregulation of the Let-7 pathway is specifically associated with the C5 molecular subtype of serous ovarian cancer. DNA copy number and gene expression of HMGA2, alleles of Let-7, LIN28, LIN28B, MYC, MYCN, DICER1, and RNASEN were measured using microarray and quantitative reverse transcriptase PCR. Immunohistochemistry was performed on 127 samples using tissue microarrays and anti-HMGA2 antibodies. Fluorescence in situ hybridisation of bacterial artificial chromosomes hybridized to 239 ovarian tumours was used to measure translocation at the LIN28B locus. Short interfering RNA knockdown in ovarian cell lines was used to test the functionality of associations observed. Four molecular subtypes (C1, C2, C4, C5) of high-grade serous ovarian cancers were robustly represented in each dataset and showed similar pattern of patient survival. We found highly specific activation of a pathway involving MYCN, LIN28B, Let-7 and HMGA2 in the C5 molecular subtype defined by MYCN amplification and over-expression, over-expression of MYCN targets including the Let-7 repressor LIN28B, loss of Let-7 expression and HMGA2 amplification and over-expression. DICER1, a known Let-7 target, and RNASEN were over-expressed in C5 tumours. We saw no evidence of translocation at the LIN28B locus in C5 tumours. The reported interaction between LIN28B and Let-7 was recapitulated by siRNA knockdown in ovarian cancer cell lines. Our results associate deregulation of MYCN and downstream targets, including Let-7 and oncofetal genes, with serous ovarian cancer. We define for the first time how elements of an oncogenic pathway, involving multiple genes that contribute to stem cell renewal, is specifically altered in a molecular subtype of serous ovarian cancer. By defining the drivers of a molecular subtype of serous ovarian cancers we provide a novel strategy for targeted therapeutic intervention
fMRI scanner noise interaction with affective neural processes
The purpose of the present study was the investigation of interaction effects between functional MRI scanner noise and affective neural processes. Stimuli comprised of psychoacoustically balanced musical pieces, expressing three different emotions (fear, neutral, joy). Participants (N=34, 19 female) were split into two groups, one subjected to continuous scanning and another subjected to sparse temporal scanning that features decreased scanner noise. Tests for interaction effects between scanning group (sparse/quieter vs continuous/noisier) and emotion (fear, neutral, joy) were performed. Results revealed interactions between the affective expression of stimuli and scanning group localized in bilateral auditory cortex, insula and visual cortex (calcarine sulcus). Post-hoc comparisons revealed that during sparse scanning, but not during continuous scanning, BOLD signals were significantly stronger for joy than for fear, as well as stronger for fear than for neutral in bilateral auditory cortex. During continuous scanning, but not during sparse scanning, BOLD signals were significantly stronger for joy than for neutral in the left auditory cortex and for joy than for fear in the calcarine sulcus. To the authors' knowledge, this is the first study to show a statistical interaction effect between scanner noise and affective processes and extends evidence suggesting scanner noise to be an important factor in functional MRI research that can affect and distort affective brain processes
Comparison of Expression Profiles in Ovarian Epithelium In Vivo and Ovarian Cancer Identifies Novel Candidate Genes Involved in Disease Pathogenesis
Molecular events leading to epithelial ovarian cancer are poorly understood but
ovulatory hormones and a high number of life-time ovulations with concomitant
proliferation, apoptosis, and inflammation, increases risk. We identified genes
that are regulated during the estrous cycle in murine ovarian surface epithelium
and analysed these profiles to identify genes dysregulated in human ovarian
cancer, using publically available datasets. We identified 338 genes that are
regulated in murine ovarian surface epithelium during the estrous cycle and
dysregulated in ovarian cancer. Six of seven candidates selected for
immunohistochemical validation were expressed in serous ovarian cancer,
inclusion cysts, ovarian surface epithelium and in fallopian tube epithelium.
Most were overexpressed in ovarian cancer compared with ovarian surface
epithelium and/or inclusion cysts (EpCAM, EZH2, BIRC5) although BIRC5 and EZH2
were expressed as highly in fallopian tube epithelium as in ovarian cancer. We
prioritised the 338 genes for those likely to be important for ovarian cancer
development by in silico analyses of copy number aberration and
mutation using publically available datasets and identified genes with
established roles in ovarian cancer as well as novel genes for which we have
evidence for involvement in ovarian cancer. Chromosome segregation emerged as an
important process in which genes from our list of 338 were over-represented
including two (BUB1, NCAPD2) for which there
is evidence of amplification and mutation. NUAK2, upregulated in ovarian surface
epithelium in proestrus and predicted to have a driver mutation in ovarian
cancer, was examined in a larger cohort of serous ovarian cancer where patients
with lower NUAK2 expression had shorter overall survival. In conclusion,
defining genes that are activated in normal epithelium in the course of
ovulation that are also dysregulated in cancer has identified a number of
pathways and novel candidate genes that may contribute to the development of
ovarian cancer
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
Recommended from our members
Ultra-fast fluid flow measurement in porous media by MRI: correlation studies in a heterogeneous system
Recommended from our members
Sound-level measurements and calculations of safe noise dosage during EPI at 3T
Magnetic resonance imaging in entomology: a critical review
Magnetic resonance imaging (MRI) enables in vivo imaging of organisms. The recent development of the magnetic resonance microscope (MRM) has enabled organisms within the size range of many insects to be imaged. Here, we introduce the principles of MRI and MRM and review their use in entomology. We show that MRM has been successfully applied in studies of parasitology, development, metabolism, biomagnetism and morphology, and the advantages and disadvantages relative to other imaging techniques are discussed. In addition, we illustrate the images that can be obtained using MRM. We conclude that although MRM has significant potential, further improvements to the technique are still desirable if it is to become a mainstream imaging technology in entomology.status: publishe
- …