6,896 research outputs found

    Quantitative estimates of relationships between geomagnetic activity and equatorial spread-F as determined by TID occurrence levels

    Get PDF
    Using a world-wide set of stations for 15 years, quantitative estimates of changes to equatorial spread-F (ESF) occurrence rates obtained from ionogram scalings, have been determined for a range of geomagnetic activity (GA) levels, as well as for four different levels of solar activity. Average occurrence rates were used as a reference. The percentage changes vary significantly depending on these subdivisions. For example for very high GA the inverse association is recorded by a change of -33% for R-z greater than or equal to 150, and -10% for R-z < 50. Using data for 9 years for the equatorial station, Huancayo, these measurements of ESF which indicate the presence of TIDs, have also been investigated by somewhat similar analyses. Additional parameters were used which involved the local times of GA, with the ESF being examined separately for occurrence pre-midnight (PM) and after-midnight (AM). Again the negative changes were most pronounced for high GA in R-z-max years (-21%). This result is for PM ESF for GA at a local time of 1700. There were increased ESF levels (+31%) for AM ESF in R-z-min years for high GA around 2300 LT. This additional knowledge of the influence of GA on ESF occurrence involving not only percentage changes, but these values for a range of parameter levels, may be useful if ever short-term forecasts are needed. There is some discussion on comparisons which can be made between ESF results obtained by coherent scatter from incoherent-scatter equipment and those obtained by ionosondes

    Effect of Deer Density on Breeding Birds in Delaware

    Get PDF
    Previous research has suggested that high deer densities negatively impact bird communities. Most of this research was conducted using a very high deer density compared to no deer. Our research investigated deer impacts across a density gradient to determine an appropriate density for deer management efforts. Using Breeding Bird Survey (BBS) data from 2005- 2006 and Delaware Department of Natural Resources and Environmental Control (DNREC) deer density data for the same time period, we compared avian richness and relative abundance for BBS points to deer density in Delaware. We divided deer densities into 3 categories: low (\u3c12 deer/km2), medium (12-23 deer/km2) and high (\u3e23 deer/km2). We placed birds into the following deer-sensitive guilds: interior obligates, forest ground nesters, shrub nesters, ground gleaners, low canopy foragers, and tropical migrants. The species richness of ground gleaners was higher in high deer densities (F1.36 = 17.05, P = 0.0002). No other guilds\u27 species richness was affected. The relative abundances of ground gleaners (F1.36 = 25.60, P = \u3c0.0001) and tropical migrants (F1.36 = 4.11, P = 0.0501) were lowest in low deer densities. Relative abundance of wood thrush (Hylocichla mustelina) was also lowest in low deer densities (F1.36 = 21.60, P = \u3c0.0001). Richness and abundance of all guilds were positively influenced by the percent forest cover within a 50 m buffer. The effects of deer density on these bird communities were generally opposite of what past literature has suggested. In order to better understand this trend I have also conducted 618 of my own point counts and corresponding vegetation surveys throughout Delaware. This data was collected from May- August 2008 and will be repeated in the summer of 2009

    Climate Change Adaptation in Mediterranean Cities: An Introduction to the Special Issue

    Get PDF
    Given the highly developed nature of Mediterranean regions and their importance in global trade and migration, it is crucial to develop comprehensive solutions for climate change. The widespread societal impacts of climate change add urgency towards transdisciplinary and transnational solutions for climate change adaptation. We represent the Mediterranean Climate Change Consortium (MC-4), an international network of scholars, policy makers, and practitioners working towards climate change adaptation in cities with Mediterranean climates. Our proposition is that areas with similar, Mediterranean, climates will have more climate adaptation lessons to share with each other than areas with distinctly different climates. As a step towards this, we present this special issue, which is a collection of articles and practitioner notes focused on climate change adaptation in Mediterranean climate cities. While this issue has a special focus on southern California, we hope these articles serve as a springboard for the discussion of adaptation lessons from other Mediterranean areas. We look forward to highlighting these regions in subsequent issues. We would like to invite other Mediterranean climate change adaptation scholars and professionals to join us in sharing their research and case studies to be collected in this volume

    Graphics for uncertainty

    Get PDF
    Graphical methods such as colour shading and animation, which are widely available, can be very effective in communicating uncertainty. In particular, the idea of a ‘density strip’ provides a conceptually simple representation of a distribution and this is explored in a variety of settings, including a comparison of means, regression and models for contingency tables. Animation is also a very useful device for exploring uncertainty and this is explored particularly in the context of flexible models, expressed in curves and surfaces whose structure is of particular interest. Animation can further provide a helpful mechanism for exploring data in several dimensions. This is explored in the simple but very important setting of spatiotemporal data

    Casimir-Polder force density between an atom and a conducting wall

    Get PDF
    In this paper we calculate the Casimir-Polder force density (force per unit area acting on the elements of the surface) on a metallic plate placed in front of a neutral atom. To obtain the force density we use the quantum operator associated to the electromagnetic stress tensor. We explicitly show that the integral of this force density over the plate reproduces the total force acting on the plate. This result shows that, although the force is obtained as a sum of surface element-atom contributions, the stress-tensor method includes also nonadditive components of Casimir-Polder forces in the evaluation of the force acting on a macroscopic object.Comment: 5 page

    Associations involving delays (particularly long delays) between certain weather parameters and geomagnetic activity

    Get PDF
    Four sunspot-minimum periods (1963-1966, 1971-1977, 1983-1987 and 1992-1997) have been examined for the results which are presented. Using several different weather parameters, tropospheric gravity waves, enhanced cold fronts and two rainfall data sets in Eastern Australia, associations at reasonably high levels of significance have been found with enhanced geomagnetic activity (EGA). Statistically this EGA involved either short delays of several days or long delays of about 20 days. The geomagnetic parameters used were (a) the AE index (b) the hourly H component for a number of stations and (c) the daily K-P-sum value. The K-P-sum analyses have shown that the EGA associated with the delays form part of four or five cycles of recurrent geomagnetic activity for 27-day periodicities. Furthermore statistically two recurrent cycles are found to exist concurrently, one apparently related to the short delays and the other to the long delays. Periodicities of 13.5 days are created because the two sets are displaced from each other by approximately this interval. A brief reference is made to the 13.5 periodicity known to exist for geomagnetic activity and the evidence in the literature for active regions on the sun to be displaced by 180 degrees of solar longitude

    Computational science and re-discovery: open-source implementations of ellipsoidal harmonics for problems in potential theory

    Full text link
    We present two open-source (BSD) implementations of ellipsoidal harmonic expansions for solving problems of potential theory using separation of variables. Ellipsoidal harmonics are used surprisingly infrequently, considering their substantial value for problems ranging in scale from molecules to the entire solar system. In this article, we suggest two possible reasons for the paucity relative to spherical harmonics. The first is essentially historical---ellipsoidal harmonics developed during the late 19th century and early 20th, when it was found that only the lowest-order harmonics are expressible in closed form. Each higher-order term requires the solution of an eigenvalue problem, and tedious manual computation seems to have discouraged applications and theoretical studies. The second explanation is practical: even with modern computers and accurate eigenvalue algorithms, expansions in ellipsoidal harmonics are significantly more challenging to compute than those in Cartesian or spherical coordinates. The present implementations reduce the "barrier to entry" by providing an easy and free way for the community to begin using ellipsoidal harmonics in actual research. We demonstrate our implementation using the specific and physiologically crucial problem of how charged proteins interact with their environment, and ask: what other analytical tools await re-discovery in an era of inexpensive computation?Comment: 25 pages, 3 figure

    Explanation for Anomalous Shock Temperatures Measured by Neutron Resonance Spectroscopy

    Full text link
    Neutron resonance spectrometry (NRS) has been used to measure the temperature inside Mo samples during shock loading. The temperatures obtained were significantly higher than predicted assuming ideal hydrodynamic loading. The effect of plastic flow and non-ideal projectile behavior were assessed. Plastic flow was calculated self-consistently with the shock jump conditions: this is necessary for a rigorous estimate of the locus of shock states accessible. Plastic flow was estimated to contribute a temperature rise of 53K compared with hydrodynamic flow. Simulations were performed of the operation of the explosively-driven projectile system used to induce the shock in the Mo sample. The simulations predicted that the projectile was significantly curved on impact, and still accelerating. The resulting spatial variations in load, including radial components of velocity, were predicted to increase the apparent temperature that would be deduced from the width of the neutron resonance by 160K. These corrections are sufficient to reconcile the apparent temperatures deduced using NRS with the accepted properties of Mo, in particular its equation of state.Comment: near-final version, waiting for final consent from an autho

    LiSc(BH_4)_4 as a Hydrogen Storage Material: Multinuclear High-Resolution Solid-State NMR and First-Principles Density Functional Theory Studies

    Get PDF
    A lithium salt of anionic scandium tetraborohydride complex, LiSc(BH_4)_4, was studied both experimentally and theoretically as a potential hydrogen storage medium. Ball milling mixtures of LiBH_4 and ScCl_3 produced LiCl and a unique crystalline hydride, which has been unequivocally identified via multinuclear solid-state nuclear magnetic resonance (NMR) to be LiSc(BH_4)_4. Under the present reaction conditions, there was no evidence for the formation of binary Sc(BH_4)_3. These observations are in agreement with our first-principles calculations of the relative stabilities of these phases. A tetragonal structure in space group I (#82) is predicted to be the lowest energy state for LiSc(BH_4)_4, which does not correspond to structures obtained to date on the crystalline ternary borohydride phases made by ball milling. Perhaps reaction conditions are resulting in formation of other polymorphs, which should be investigated in future studies via neutron scattering on deuterides. Hydrogen desorption while heating these Li−Sc−B−H materials up to 400 °C yielded only amorphous phases (besides the virtually unchanged LiCl) that were determined by NMR to be primarily ScB_2 and [B_(12)H_(12)]^(−2) anion containing (e.g., Li_2B_(12)H_(12)) along with residual LiBH_4. Reaction of a desorbed LiSc(BH_4)_4 + 4LiCl mixture (from 4LiBH_4/ScCl_3 sample) with hydrogen gas at 70 bar resulted only in an increase in the contents of Li_2B_(12)H_(12) and LiBH_4. Full reversibility to reform the LiSc(BH_4)_4 was not found. Overall, the Li−Sc−B−H system is not a favorable candidate for hydrogen storage applications
    • …
    corecore