31 research outputs found
Subcellular localization and trafficking of phytolongins (non-SNARE longins) in the plant secretory pathway
SNARE proteins are central elements of the machinery involved in membrane fusion of eukaryotic cells. In animals and plants, SNAREs have diversified to sustain a variety of specific functions. In animals, R-SNARE proteins called brevins have diversified; in contrast, in plants, the R-SNARE proteins named longins have diversified. Recently, a new subfamily of four longins named 'phytolongins' (Phyl) was discovered. One intriguing aspect of Phyl proteins is the lack of the typical SNARE motif, which is replaced by another domain termed the 'Phyl domain'. Phytolongins have a rather ubiquitous tissue expression in Arabidopsis but still await intracellular characterization. In this study, we found that the four phytolongins are distributed along the secretory pathway. While Phyl2.1 and Phyl2.2 are strictly located at the endoplasmic reticulum network, Phyl1.2 associates with the Golgi bodies, and Phyl1.1 locates mainly at the plasma membrane and partially in the Golgi bodies and post-Golgi compartments. Our results show that export of Phyl1.1 from the endoplasmic reticulum depends on the GTPase Sar1, the Sar1 guanine nucleotide exchange factor Sec12, and the SNAREs Sec22 and Memb11. In addition, we have identified the Y48F49 motif as being critical for the exit of Phyl1.1 from the endoplasmic reticulum. Our results provide the first characterization of the subcellular localization of the phytolongins, and we discuss their potential role in regulating the secretory pathway.</p
Recommended from our members
Genetic and Computational Identification of a Conserved Bacterial Metabolic Module
We have experimentally and computationally defined a set of genes that form a conserved metabolic module in the α-proteobacterium Caulobacter crescentus and used this module to illustrate a schema for the propagation of pathway-level annotation across bacterial genera. Applying comprehensive forward and reverse genetic methods and genome-wide transcriptional analysis, we (1) confirmed the presence of genes involved in catabolism of the abundant environmental sugar myo-inositol, (2) defined an operon encoding an ABC-family myo-inositol transmembrane transporter, and (3) identified a novel myo-inositol regulator protein and cis-acting regulatory motif that control expression of genes in this metabolic module. Despite being encoded from non-contiguous loci on the C. crescentus chromosome, these myo-inositol catabolic enzymes and transporter proteins form a tightly linked functional group in a computationally inferred network of protein associations. Primary sequence comparison was not sufficient to confidently extend annotation of all components of this novel metabolic module to related bacterial genera. Consequently, we implemented the Graemlin multiple-network alignment algorithm to generate cross-species predictions of genes involved in myo-inositol transport and catabolism in other α-proteobacteria. Although the chromosomal organization of genes in this functional module varied between species, the upstream regions of genes in this aligned network were enriched for the same palindromic cis-regulatory motif identified experimentally in C. crescentus. Transposon disruption of the operon encoding the computationally predicted ABC myo-inositol transporter of Sinorhizobium meliloti abolished growth on myo-inositol as the sole carbon source, confirming our cross-genera functional prediction. Thus, we have defined regulatory, transport, and catabolic genes and a cis-acting regulatory sequence that form a conserved module required for myo-inositol metabolism in select α-proteobacteria. Moreover, this study describes a forward validation of gene-network alignment, and illustrates a strategy for reliably transferring pathway-level annotation across bacterial species.</p
Genetic and Computational Identification of a Conserved Bacterial Metabolic Module
We have experimentally and computationally defined a set of genes that form a conserved metabolic module in the α-proteobacterium Caulobacter crescentus and used this module to illustrate a schema for the propagation of pathway-level annotation across bacterial genera. Applying comprehensive forward and reverse genetic methods and genome-wide transcriptional analysis, we (1) confirmed the presence of genes involved in catabolism of the abundant environmental sugar myo-inositol, (2) defined an operon encoding an ABC-family myo-inositol transmembrane transporter, and (3) identified a novel myo-inositol regulator protein and cis-acting regulatory motif that control expression of genes in this metabolic module. Despite being encoded from non-contiguous loci on the C. crescentus chromosome, these myo-inositol catabolic enzymes and transporter proteins form a tightly linked functional group in a computationally inferred network of protein associations. Primary sequence comparison was not sufficient to confidently extend annotation of all components of this novel metabolic module to related bacterial genera. Consequently, we implemented the Graemlin multiple-network alignment algorithm to generate cross-species predictions of genes involved in myo-inositol transport and catabolism in other α-proteobacteria. Although the chromosomal organization of genes in this functional module varied between species, the upstream regions of genes in this aligned network were enriched for the same palindromic cis-regulatory motif identified experimentally in C. crescentus. Transposon disruption of the operon encoding the computationally predicted ABC myo-inositol transporter of Sinorhizobium meliloti abolished growth on myo-inositol as the sole carbon source, confirming our cross-genera functional prediction. Thus, we have defined regulatory, transport, and catabolic genes and a cis-acting regulatory sequence that form a conserved module required for myo-inositol metabolism in select α-proteobacteria. Moreover, this study describes a forward validation of gene-network alignment, and illustrates a strategy for reliably transferring pathway-level annotation across bacterial species
L outbornicité dans le réseau PACA-Est-Haute-Corse-Monaco (du 1er janvier 2009 au 31 décembre 2010)
NICE-BU Médecine Odontologie (060882102) / SudocSudocFranceF
Les douleurs abdominales récidivantes de l'enfant (étude rétrospective de 33 cas)
DIJON-BU Médecine Pharmacie (212312103) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF
Distinction Between Cultivated And Wild Chicory Gene Pools Using Aflp Markers
The cultivation area of industrial chicory, Cichorium intybus L. cv Sativum, coincides with the natural distribution area of its wild relative, C. intybus L. which could lead to gene flow between wild and cultivated types. The genetic diversity within and between the two types has therefore been studied using AFLP genotyping of samples from 12 wild populations collected in Belgium and ten commercial varieties. The genotyping of 233 individuals allowed the identification of 254 AFLP markers. Similar levels of genetic diversity were observed within wild populations and cultivated varieties, suggesting the absence of any strong bottleneck in the history of the cultivated types. The phylogenetic analysis pointed to a monophyletic origin of cultivated varieties as compared to the local wild populations studied, hence the two types of chicory form two separate gene pools. The genotyping of some individuals sampled in ruderal sites clearly showed that they belong to the cultivated gene pool, which suggests the existence of feral or weedy types. The low differentiation observed among wild populations indicates that gene flow might be important in this species.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Assessement of quadriceps strength, endurance and fatigue in FSHD and CMT: Benefits and limits of femoral nerve magnetic stimulation
Objectives
To (i) evaluate the feasibility and the reliability of a test assessing quadriceps strength, endurance and fatigue in patients with fascioscapulohumeral dystrophy (FSHD) and Charcot-Marie-Tooth disease (CMT), (ii) compare quadriceps function between patients and healthy controls.
Methods
Controls performed the test once and patients twice on two separate visits. It involved progressive sets of 10 isometric contractions each followed by neuromuscular assessments with FNMS.
Results
Volitional assessment of muscle strength, endurance and fatigue appeared to be reliable in FSHD and CMT patients. Supramaximal FNMS was achieved in ∼70% of FSHD patients and in no CMT patients. In FSHD patients, Femoral nerve magnetic stimulation (FNMS) provided reliable assessment of central (typical error as a coefficient of variation (CVTE) 0.85 for evoked responses) function. Patients and controls had similar reductions in evoked quadriceps responses, voluntary activation and similar endurance.
Conclusions
This test provides reliable evaluation but FNMS exhibits limitations due to insufficient stimulation intensity particularly in neurogenic conditions. It showed similar central and peripheral quadriceps fatigability in patients and controls.
Significance
This test may be a valuable tool for patient follow-up although further development of magnetic stimulation devices is needed to extend its applicability
Reference Transcriptomes and Detection of Duplicated Copies in Hexaploid and Allododecaploid Spartina Species (Poaceae)
International audienceIn this study, we report the assembly and annotation of five reference transcriptomes for the European hexaploid Spartina species (S. maritima, S. alterniflora and their homoploid hybrids S. x townsendii and S. x neyrautii) and the allododecaploid invasive species S. anglica. These transcriptomes were constructed from various leaf and root cDNA libraries that were sequenced using both Roche-454 and Illumina technologies. Considering the high ploidy levels of the Spartina genomes under study, and considering the absence of diploid reference genome and the need of an appropriate analytical strategy, we developed generic bioinformatics tools to (1) detect different haplotypes of each gene within each species and (2) assign a parental origin to haplotypes detected in the hexaploid hybrids and the neo-allopolyploid. The approach described here allows the detection of putative homeologs from sets of short reads. Synonymous substitution rate (KS) comparisons between haplotypes from the hexaploid species revealed the presence of one KS peak (likely resulting from the tetraploid duplication event). The procedure developed in this study can be applied for future differential gene expression or genomics experiments to study the fate of duplicated genes in the invasive allododecaploid S. anglica