225 research outputs found

    Evidence for Rapid Variability in the Optical Light Curve of the Type Ia SN 2014J

    Full text link
    We present results of high-cadence monitoring of the optical light curve of the nearby, Type Ia SN 2014J in M82 using the 2.3m Aristarchos telescope. BB and VV-band photometry on days 15-18 after tmax(B)t_{max}(B), obtained with a cadence of 2 min per band, reveals evidence for rapid variability at the 0.02-0.05 mag level on timescales of 15-60 min on all four nights, taking the red noise estimation at face value. The decline slope was measured to be steeper in the BB-band than in VV-band, and to steadily decrease in both bands from 0.15 mag/day (night 1) to 0.04 mag/day (night 4) in V and from 0.19 mag/day (night 1) to 0.06 mag/day (night 4) in B, corresponding to the onset of the secondary maximum. We propose that rapid variability could be due to one or a combination of the following scenarios: the clumpiness of the ejecta, their interaction with circumstellar material, the asymmetry of the explosion, or the mechanism causing the secondary maximum in the near-infrared light curve. We encourage the community to undertake high-cadence monitoring of future, nearby and bright supernovae to investigate the intraday behavior of their light curves.Comment: 9 pages, 6 figures, 2 tables. Accepted for publication in A&

    Discovery of optical candidate supernova remnants in Sagittarius

    Full text link
    During an [O III] survey for planetary nebulae, we identified a region in Sagittarius containing several candidate Supernova Remnants and obtained deep optical narrow-band images and spectra to explore their nature. The images of the unstudied area have been obtained in the light of Halpha+[N II], [S II] and [O III]. The resulting mosaic covers an area of 1.4x1.0 deg^2 where filamentary and diffuse emission was discovered, suggesting the existence of more than one supernova remnants (SNRs) in the area. Deep long slit spectra were also taken of eight different regions. Both the flux calibrated images and the spectra show that the emission from the filamentary structures originates from shock-heated gas, while the photo-ionization mechanism is responsible for the diffuse emission. Part of the optical emission is found to be correlated with the radio at 4850 MHz suggesting their association, while the WISE infrared emission found in the area at 12 and 22 micron marginally correlates with the optical. The presence of the [O III] emission line in one of the candidate SNRs suggests shock velocities into the interstellar "clouds" between 120 and 200 km/s, while the absence in the other indicates slower shock velocities. For all candidate remnants the [S II] 6716/6731 ratio indicates electron densities below 240 cm^{-3}, while the Halpha emission has been measured to be between 0.6 to 41x10^{-17} erg/s/cm^2/arcsec^2. The existence of eight pulsars within 1.5deg away from the center of the candidate SNRs also supports the scenario of many SNRs in the area as well as that the detected optical emission could be part of a number of supernovae explosions.Comment: 15 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    A long trail behind the planetary nebula HFG1 (PK 136+05) and its precataclysmic binary central star V664 Cas

    Full text link
    A deep wide-field image in the light of the Halpha+[N II] emission lines, of the planetary nebula HFG1 which surrounds the precataclysmic binary system V664 Cas, has revealed a tail of emission at least 20' long, at a position angle of 316deg. Evidence is presented which suggests that this is an ~10^5 y old trail of shocked material, left behind V664 Cas as it ejects matter whilst ploughing through its local interstellar media at anywhere between 29 and 59 km/s depending on its distance from the Sun.Comment: 3 pages, 1 figure, accepted for publication in MNRA

    A high-speed bi-polar outflow from the archetypical pulsating star Mira A

    Full text link
    Optical images and high-dispersion spectra have been obtained of the ejected material surrounding the pulsating AGB star Mira A. The two streams of knots on either side of the star, found in far ultra-viollet (FUV) GALEX images, have now been imaged clearly in the light of Halpha. Spatially resolved profiles of the same line reveal that the bulk of these knots form a bi-polar outflow with radial velocity extremes of +- 150 km/s with respect to the central star. The South stream is approaching and the North stream receding from the observer. A displacement away from Mira A between the position of one of the South stream knots in the new Halpha image and its position in the previous Palomar Observatory Sky Survey (POSS I) red plate has been noted. If interpreted as a consequence of expansion proper motions the bipolar outflow is tilted at 69deg +- 2deg to the plane of the sky, has an outflow velocity of 160 +- 10 km/s and is ~1000 y old.Comment: 8 pages, 5 figures. Accepted for pubication by A&
    • …
    corecore