547 research outputs found

    A1 antagonism in asthma: better than coffee?

    Get PDF

    Mathematical model reveals role of nucleotide signaling in airway surface liquid homeostasis and its dysregulation in cystic fibrosis

    Get PDF
    The intrapulmonary airways conduct air to the alveoli and are defended from inhaled pathogens by a highly regulated protective system of mucus, cilia, and liquid. In healthy lungs, a well-hydrated mucus layer is cleared by cilia from airway surfaces. In cystic fibrosis (CF), airway surfaces are dehydrated, leading to a failure of cilia-mediated mucus clearance and accumulation of pathogen-infected mucus. In this study, we created a mathematical model of airway surface liquid regulation in normal and CF cells and used the model to investigate a potential therapy to rehydrate CF airways and restore proper mucus clearance

    Mucus Hyperconcentration as a Unifying Aspect of the Chronic Bronchitic Phenotype

    Get PDF
    Abnormalities in mucus production and qualitative properties such as mucus hydration are central to the pathophysiology of airway disease including cystic fibrosis, asthma, and chronic bronchitis. In vitro air–liquid interface epithelial cell cultures demonstrate direct relationships between mucociliary transport, periciliary liquid (PCL) height, and mucus concentration (expressed as percent solids or partial osmotic pressure). In health, the osmotic modulus/pressure of the PCL exceeds that of the mucus layer, resulting in efficient, low-friction movement of mucus. In disease, through multiple mechanisms, the osmotic pressure of the mucus begins to exceed basal PCL values, resulting in compression of the cilia and slowing of mucus transport. The in vivo data in both cystic fibrosis and chronic bronchitis parallel in vitro data demonstrating that when mucus osmotic pressure is increased, mucociliary clearance is decreased. In chronic bronchitis, there is a direct correlation between FEV1 and percent solids of mucus, demonstrating a strong relationship between disease progression and mucus abnormalities. Animal models, based mechanistically on raised sodium absorption (and therefore water absorption) from airway surfaces, mimic the pathophysiology of chronic obstructive pulmonary disease. Collectively, these data suggest the importance of mucus concentration in the pathogenesis of airway disease. It is important to understand the precise mechanisms that result in mucus hyperconcentration, for example, mucin overproduction versus abnormal regulation of ion/water transport, which may be unique to and characteristic of each disease phenotype. The measurement of mucus concentration may be a simple method to diagnose chronic bronchitis, monitor its progression, and serve as a biomarker for development of new therapies

    Polarized Signaling via Purinoceptors in Normal and Cystic Fibrosis Airway Epithelia

    Get PDF
    Airway epithelia are confronted with distinct signals emanating from the luminal and/or serosal environments. This study tested whether airway epithelia exhibit polarized intracellular free calcium (Ca2+i) and anion secretory responses to 5′ triphosphate nucleotides (ATP/UTP), which may be released across both barriers of these epithelia. In both normal and cystic fibrosis (CF) airway epithelia, mucosal exposure to ATP/UTP increased Ca2+i and anion secretion, but both responses were greater in magnitude for CF epithelia. In CF epithelia, the mucosal nucleotide–induced response was mediated exclusively via Ca2+i interacting with a Ca2+-activated Cl− channel (CaCC). In normal airway epithelia (but not CF), nucleotides stimulated a component of anion secretion via a chelerythrine-sensitive, Ca2+-independent PKC activation of cystic fibrosis transmembrane conductance regulator. In normal and CF airway epithelia, serosally applied ATP or UTP were equally effective in mobilizing Ca2+i. However, serosally applied nucleotides failed to induce anion transport in CF epithelia, whereas a PKC-regulated anion secretory response was detected in normal airway epithelia. We conclude that (1) in normal nasal epithelium, apical/basolateral purinergic receptor activation by ATP/UTP regulates separate Ca2+-sensitive and Ca2+-insensitive (PKC-mediated) anion conductances; (2) in CF airway epithelia, the mucosal ATP/UTP-dependent anion secretory response is mediated exclusively via Ca2+i; and (3) Ca2+i regulation of the Ca2+-sensitive anion conductance (via CaCC) is compartmentalized in both CF and normal airway epithelia, with basolaterally released Ca2+i failing to activate CaCC in both epithelia

    Soluble Mediators, Not Cilia, Determine Airway Surface Liquid Volume in Normal and Cystic Fibrosis Superficial Airway Epithelia

    Get PDF
    A key aspect of the lung's innate defense system is the ability of the superficial epithelium to regulate airway surface liquid (ASL) volume to maintain a 7-μm periciliary liquid layer (PCL), which is required for cilia to beat and produce mucus flow. The mechanisms whereby airway epithelia regulate ASL height to ≥7 μm are poorly understood. Using bumetanide as an inhibitor of Cl− secretion, and nystatin as an activator of Na+ absorption, we found that a coordinated “blending” of both Cl− secretion and Na+ absorption must occur to effect ASL volume homeostasis. We then investigated how ASL volume status is regulated by the underlying epithelia. Cilia were not critical to this process as (a) ASL volume was normal in cultures from patients with primary ciliary dyskinesia with immotile cilia, and (b) in normal cultures that had not yet undergone ciliogenesis. However, we found that maneuvers that mimic deposition of excess ASL onto the proximal airways, which occurs during mucociliary clearance and after glandular secretion, acutely stimulated Na+ absorption, suggesting that volume regulation was sensitive to changes in concentrations of soluble mediators in the ASL rather than alterations in ciliary beating. To investigate this hypothesis further, we added potential “soluble mediators” to the ASL. ASL volume regulation was sensitive to a channel-activating protein (CAP; trypsin) and a CAP inhibitor (aprotinin), which regulated Na+ absorption via changes in epithelial Na+ channel (ENaC) activity in both normal and cystic fibrosis cultures. ATP was also found to acutely regulate ASL volume by inducing secretion in normal and cystic fibrosis (CF) cultures, while its metabolite adenosine (ADO) evoked secretion in normal cultures but stimulated absorption in CF cultures. Interestingly, the amount of ASL/Cl− secretion elicited by ATP/ADO was influenced by the level of CAP-induced Na+ absorption, suggesting that there are important interactions between the soluble regulators which finely tune ASL volume

    Human Airway Ecto-adenylate Kinase: A MECHANISM TO PROPAGATE ATP SIGNALING ON AIRWAY SURFACES

    Get PDF
    Mechanically induced ATP release from human airway epithelial cells regulates mucociliary clearance through cell surface nucleotide receptors. Ectoenzymes detected on these cells were recently shown to terminate ATP-mediated responses by sequential dephosphorylation of extracellular ATP into ADP, AMP, and adenosine. We now demonstrate that an ecto-adenylate kinase (ecto-AK) contributes to the metabolism of adenine nucleotides on human airway epithelial surfaces by the reversible reaction: ATP + AMP 2ADP. This phosphotransferase exhibited a bilateral distribution on polarized primary cultures of human bronchial epithelial cells with a 4-fold higher activity on the mucosal surface. Ecto-AK presented an absolute requirement for magnesium and adenine-based nucleotides. UMP, GMP, and CMP could not substitute for AMP as gamma-phosphate acceptor, and UDP could not replace ADP. Apparent K(m) and V(max) values were 23 +/- 5 microM and 1.1 +/- 0.1 nmol x min(-1) x cm(-2) for ATP and 43 +/- 6 microM and 0.5 +/- 0.1 nmol x min(-1) x cm(-2) for ADP. Ecto-AK accounted for 20% of [gamma-(32)P]ATP dephosphorylation, and the impermeant AK inhibitor, diadenosine pentaphosphate, reduced ADPase activity by more than 70% on both epithelial surfaces. Time course experiments on ATP metabolism demonstrated that ecto-AK significantly prolongs effective ATP and ADP concentrations on airway epithelial surfaces for P2 receptor signaling and reduces by 6-fold adenosine production. Our data suggest a role for this nucleotide entrapment cycle in the propagation of purine-mediated mucociliary clearance on human airway epithelial surfaces

    Purinergic receptors in airway epithelia

    Get PDF
    Nucleotides and nucleosides within the airway surface liquid regulate mucociliary clearance (MCC) activities, the primary innate defense mechanism that removes foreign particles and pathogens from airway surfaces. Nucleotide and nucleoside actions in the airways are mediated mainly by two purinergic receptor subtypes, the Gq-coupled ATP/UTP-sensing P2Y2 receptor and the Gs-coupled A2b adenosine receptor. Activation of the A2b receptor results in cyclic AMP-dependent activation of the cystic fibrosis transmebrane regulator (CFTR) Cl- channel and stimulation of ciliary beat frequency. Agonist occupation of the P2Y2 receptor promotes inhibition of Na+ absorption as well as CFTR-dependent and CFTR-independent Cl-secretion, ciliary beating, and mucin secretion

    The Mitochondrial Barriers Segregate Agonist-induced Calcium-dependent Functions in Human Airway Epithelia

    Get PDF
    In airway epithelia, purinergic receptor (P2Y2-R) stimulation of intracellular calcium (Ca2+i)–regulated ion transport is restricted to the membrane domain ipsilateral to receptor activation, implying compartmentalization of Ca2+i signaling. Because mitochondria can spatially restrict cellular Ca2+i signals, immunocytochemical, electron microscopic, and fluorescent studies of mitochondria localization were performed in human airway epithelia. Although concentrated at the apical domain, mitochondria were found distributed at both the apical and the basolateral poles and in close association with the endoplasmic reticulum. The role of mitochondria in locally restricting P2Y2-R–induced Ca2+i signals was investigated by measuring changes in mitochondrial Ca2+ (Ca2+m) in human airway epithelial monolayers. P2Y2-R activation induced Ca2+m accumulation in mitochondria confined to the domain ipsilateral to P2Y2-R stimulation, which was blocked by mitochondrial uncoupling with 1 μM CCCP and 2.5 μg/ml oligomycin. The role of mitochondria in restricting the cellular cross-talk between basolateral P2Y2-R–dependent Ca2+i mobilization and apical membrane Ca2+-activated Cl− secretion was investigated in studies simultaneously measuring Ca2+i and Cl− secretion in cystic fibrosis human airway epithelial monolayers. Activation of basolateral P2Y2-Rs produced similar increases in Ca2+i in monolayers without and with pretreatment with uncouplers, whereas Ca2+i-activated Cl− secretion was only efficiently triggered in mitochondria-uncoupled conditions. We conclude that (a) mitochondria function as a Ca2+i-buffering system in airway epithelia, compartmentalizing Ca2+i-dependent functions to the membrane ipsilateral to receptor stimulation; and (b) the mitochondria provide structural barriers that protect the airway epithelia against nonspecific activation of Ca2+i-modulated functions associated with Ca2+i signals emanating from the apical or the basolateral membrane domains

    Transduction of Non-Small Cell Lung Cancer Cells by Adenoviral and Retroviral Vectors

    Get PDF
    Gene transfer into a panel of non-small cell lung cancer (NSCLC) cells by adenoviral (Ad) and retroviral (RV) vectors was studied. Indexed to multiplicity of infection (MOI), Ad vectors transduce squamous, adenosquamous, and malignant mesothelioma cells with greater efficiency than large cells or adenocarcinoma cells. Transduction-sensitive cells bind the Ad vector with specificity for the Ad fiber knob, and internalize vector efficiently. Transduction-refractory cells bind and internalize vector by less efficient pathways. Like Ad vectors, there is heterogeneity in RV transduction efficiencies of different NSCLC subtypes. With respect to the most common cell type metastatic to the pleural space (adenocarcinoma), amphotropic retroviral vectors transduce cells of this subtype more efficiently (at a lower MOI) than Ad. RV transduction is not solely dependent on cellular replication, and both permissive and refractory cell lines express the mRNA for the amphotropic RV receptor. These observations suggest that neither Ad nor RV vectors will suffice a priori as the optimal gene transfer vehicle, and successful gene therapy of lung cancer may require tumor-specific or patient-specific vectors

    Biophysical Model of Ion Transport across Human Respiratory Epithelia Allows Quantification of Ion Permeabilities

    Get PDF
    Lung health and normal mucus clearance depend on adequate hydration of airway surfaces. Because transepithelial osmotic gradients drive water flows, sufficient hydration of the airway surface liquid depends on a balance between ion secretion and absorption by respiratory epithelia. In vitro experiments using cultures of primary human nasal epithelia and human bronchial epithelia have established many of the biophysical processes involved in airway surface liquid homeostasis. Most experimental studies, however, have focused on the apical membrane, despite the fact that ion transport across respiratory epithelia involves both cellular and paracellular pathways. In fact, the ion permeabilities of the basolateral membrane and paracellular pathway remain largely unknown. Here we use a biophysical model for water and ion transport to quantify ion permeabilities of all pathways (apical, basolateral, paracellular) in human nasal epithelia cultures using experimental (Ussing Chamber and microelectrode) data reported in the literature. We derive analytical formulas for the steady-state short-circuit current and membrane potential, which are for polarized epithelia the equivalent of the Goldman-Hodgkin-Katz equation for single isolated cells. These relations allow parameter estimation to be performed efficiently. By providing a method to quantify all the ion permeabilities of respiratory epithelia, the model may aid us in understanding the physiology that regulates normal airway surface hydration
    corecore