70 research outputs found
Black-spruce-lichen woodlands growth and carbon drawdown potentials as revealed by mature stands
The afforestation of widely distributed boreal open woodlands such as lichen woodlands (LWs) could provide both a restoration of the closed-crown forest structure in the boreal forest and a mitigation measure against global warming. By comparing natural, mature stands of LW with their dense counterparts — black-spruce–feathermoss stands as a plantation surrogate — this study aims to validate the long-term LW growth support capacity for a high tree density and their carbon sequestration potential after afforestation. Our results reveal that the site potential of LWs can be either lower or equivalent to that of dense stands. This finding contradicts the paradigm of systematic lower tree growth in LWs. The site potential of LWs can be assessed by dominant tree volume at 50 years. This study also shows that the CBM-CFS3 model can simulate the conservative net carbon balance of afforested LW, and, as such, can help reduce uncertainties regarding the long-term net carbon drawdown of afforested LWs
Recommended from our members
Increased water vapour lifetime due to global warming
Water vapour in the atmosphere is the source of a major climate feedback mechanism and potential increases in the availability of water vapour could have important consequences for mean and extreme precipitation. Future precipitation changes further depend on how the hydrological cycle responds to drivers of climate change, such as greenhouse gases and aerosols. Currently, neither the total anthropogenic influence on the hydrological cycle, nor those from individual drivers, are constrained sufficiently to make solid projections. We investigate how integrated water vapour (IWV) responds to different drivers of climate change. Results from 11 global climate models have been used, based on simulations where CO2, methane, solar irradiance, black carbon (BC), and sulphate have been perturbed separately. While the global-mean IWV is usually assumed to increase by ~7% per degree K surface temperature change, we find that the feedback response of IWV differs somewhat between drivers. Fast responses, which include the initial radiative effect and rapid adjustments to an external forcing, amplify these differences. The resulting net changes in IWV range from 6.4±0.9%/K for sulphate to 9.8±2%/K for BC. We further calculate the relationship between global changes in IWV and precipitation, which can be characterized by quantifying changes in atmospheric water vapour lifetime. Global climate models simulate a substantial increase in the lifetime, from 8.2±0.5 to 9.9±0.7 days between 1986-2005 and 2081-2100 under a high emission scenario, and we discuss to what extent the water vapour lifetime provides additional information compared to analysis of IWV and precipitation separately. We conclude that water vapour lifetime changes are an important indicator of changes in precipitation patterns and that BC is particularly efficient in prolonging the distance between evaporation and precipitation
Aerosol indirect effects
Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs)
is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (tau a) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. cloud droplet number concentration (N d) compares relatively well to the satellite data at least over the ocean. The relationship between (tau a) and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (fcld) and tau a as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld–tau a relationship, our results indicate that none can be identified as a unique explanation. Relationships similar
to the ones found in satellite data between tau a and cloud top
temperature or outgoing long-wave radiation (OLR) are simulated
by only a few GCMs. The GCMs that simulate a negative OLR - tau a relationship show a strong positive correlation between tau a and fcld. The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of tau a, and parameterisation assumptions such as a lower bound on Nd. Nevertheless, the strengths of the statistical relationships are good
predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of −1.5±0.5Wm−2. In an alternative approach, the radiative flux perturbation due to anthropogenic
aerosols can be broken down into a component over the cloud-free portion of the globe (approximately the aerosol direct effect) and a component over the cloudy portion of the globe (approximately the aerosol indirect effect). An estimate obtained by scaling these simulated clearand cloudy-sky forcings with estimates of anthropogenic tau a
and satellite-retrieved Nd–tau a regression slopes, respectively, yields a global, annual-mean aerosol direct effect estimate of −0.4±0.2Wm−2 and a cloudy-sky (aerosol indirect effect) estimate of −0.7±0.5Wm−2, with a total estimate of −1.2±0.4Wm−2
Prevalence of Drug-Resistant HIV-1 Variants in Untreated Individuals in Europe: Implications for Clinical Management
BackgroundInfection with drug-resistant human immunodeficiency virus type 1 (HIV-1) can impair the response to combination therapy. Widespread transmission of drug-resistant variants has the disturbing potential of limiting future therapy options and affecting the efficacy of postexposure prophylaxis penta increase-spacing 1>MethodsWe determined the baseline rate of drug resistance in 2208 therapy-naive patients recently and chronically infected with HIV-1 from 19 European countries during 1996-2002 ResultsIn Europe, 1 of 10 antiretroviral-naive patients carried viruses with ⩾1 drug-resistance mutation. Recently infected patients harbored resistant variants more often than did chronically infected patients (13.5% vs. 8.7%; P=.006). Non-B viruses (30%) less frequently carried resistance mutations than did subtype B viruses (4.8% vs. 12.9%; P<.01). Baseline resistance increased over time in newly diagnosed cases of non-B infection: from 2.0% (1/49) in 1996-1998 to 8.2% (16/194) in 2000-2001 ConclusionsDrug-resistant variants are frequently present in both recently and chronically infected therapy-naive patients. Drug-resistant variants are most commonly seen in patients infected with subtype B virus, probably because of longer exposure of these viruses to drugs. However, an increase in baseline resistance in non-B viruses is observed. These data argue for testing all drug-naive patients and are of relevance when guidelines for management of postexposure prophylaxis and first-line therapy are update
Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission
NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (similar to 25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available
DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France
We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon
The First Post-Kepler Brightness Dips of KIC 8462852
We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in October 2015, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1-2.5% dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor", which persist on timescales from several days to weeks. Our main results so far are: (i) there are no apparent changes of the stellar spectrum or polarization during the dips; (ii) the multiband photometry of the dips shows differential reddening favoring non-grey extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale <<1um, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term "secular" dimming, which may be caused by independent processes, or probe different regimes of a single process
Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
- …