44 research outputs found

    Analysis and Forecasting of Trending Topics in Online Media Streams

    Full text link
    Among the vast information available on the web, social media streams capture what people currently pay attention to and how they feel about certain topics. Awareness of such trending topics plays a crucial role in multimedia systems such as trend aware recommendation and automatic vocabulary selection for video concept detection systems. Correctly utilizing trending topics requires a better understanding of their various characteristics in different social media streams. To this end, we present the first comprehensive study across three major online and social media streams, Twitter, Google, and Wikipedia, covering thousands of trending topics during an observation period of an entire year. Our results indicate that depending on one's requirements one does not necessarily have to turn to Twitter for information about current events and that some media streams strongly emphasize content of specific categories. As our second key contribution, we further present a novel approach for the challenging task of forecasting the life cycle of trending topics in the very moment they emerge. Our fully automated approach is based on a nearest neighbor forecasting technique exploiting our assumption that semantically similar topics exhibit similar behavior. We demonstrate on a large-scale dataset of Wikipedia page view statistics that forecasts by the proposed approach are about 9-48k views closer to the actual viewing statistics compared to baseline methods and achieve a mean average percentage error of 45-19% for time periods of up to 14 days.Comment: ACM Multimedia 201

    FedTabDiff: Federated Learning of Diffusion Probabilistic Models for Synthetic Mixed-Type Tabular Data Generation

    Full text link
    Realistic synthetic tabular data generation encounters significant challenges in preserving privacy, especially when dealing with sensitive information in domains like finance and healthcare. In this paper, we introduce \textit{Federated Tabular Diffusion} (FedTabDiff) for generating high-fidelity mixed-type tabular data without centralized access to the original tabular datasets. Leveraging the strengths of \textit{Denoising Diffusion Probabilistic Models} (DDPMs), our approach addresses the inherent complexities in tabular data, such as mixed attribute types and implicit relationships. More critically, FedTabDiff realizes a decentralized learning scheme that permits multiple entities to collaboratively train a generative model while respecting data privacy and locality. We extend DDPMs into the federated setting for tabular data generation, which includes a synchronous update scheme and weighted averaging for effective model aggregation. Experimental evaluations on real-world financial and medical datasets attest to the framework's capability to produce synthetic data that maintains high fidelity, utility, privacy, and coverage.Comment: 9 pages, 2 figures, 2 tables, preprint version, currently under revie

    Sparsified Model Zoo Twins: Investigating Populations of Sparsified Neural Network Models

    Full text link
    With growing size of Neural Networks (NNs), model sparsification to reduce the computational cost and memory demand for model inference has become of vital interest for both research and production. While many sparsification methods have been proposed and successfully applied on individual models, to the best of our knowledge their behavior and robustness has not yet been studied on large populations of models. With this paper, we address that gap by applying two popular sparsification methods on populations of models (so called model zoos) to create sparsified versions of the original zoos. We investigate the performance of these two methods for each zoo, compare sparsification layer-wise, and analyse agreement between original and sparsified populations. We find both methods to be very robust with magnitude pruning able outperform variational dropout with the exception of high sparsification ratios above 80%. Further, we find sparsified models agree to a high degree with their original non-sparsified counterpart, and that the performance of original and sparsified model is highly correlated. Finally, all models of the model zoos and their sparsified model twins are publicly available: modelzoos.cc.Comment: Accepted at ICLR 2023 Workshop on Sparsity in Neural Network

    Fine-grained Emotional Control of Text-To-Speech: Learning To Rank Inter- And Intra-Class Emotion Intensities

    Full text link
    State-of-the-art Text-To-Speech (TTS) models are capable of producing high-quality speech. The generated speech, however, is usually neutral in emotional expression, whereas very often one would want fine-grained emotional control of words or phonemes. Although still challenging, the first TTS models have been recently proposed that are able to control voice by manually assigning emotion intensity. Unfortunately, due to the neglect of intra-class distance, the intensity differences are often unrecognizable. In this paper, we propose a fine-grained controllable emotional TTS, that considers both inter- and intra-class distances and be able to synthesize speech with recognizable intensity difference. Our subjective and objective experiments demonstrate that our model exceeds two state-of-the-art controllable TTS models for controllability, emotion expressiveness and naturalness.Comment: Accepted by ICASSP202

    FinDiff: Diffusion Models for Financial Tabular Data Generation

    Full text link
    The sharing of microdata, such as fund holdings and derivative instruments, by regulatory institutions presents a unique challenge due to strict data confidentiality and privacy regulations. These challenges often hinder the ability of both academics and practitioners to conduct collaborative research effectively. The emergence of generative models, particularly diffusion models, capable of synthesizing data mimicking the underlying distributions of real-world data presents a compelling solution. This work introduces 'FinDiff', a diffusion model designed to generate real-world financial tabular data for a variety of regulatory downstream tasks, for example economic scenario modeling, stress tests, and fraud detection. The model uses embedding encodings to model mixed modality financial data, comprising both categorical and numeric attributes. The performance of FinDiff in generating synthetic tabular financial data is evaluated against state-of-the-art baseline models using three real-world financial datasets (including two publicly available datasets and one proprietary dataset). Empirical results demonstrate that FinDiff excels in generating synthetic tabular financial data with high fidelity, privacy, and utility.Comment: 9 pages, 5 figures, 3 tables, preprint version, currently under revie

    Learning Emotional Representations from Imbalanced Speech Data for Speech Emotion Recognition and Emotional Text-to-Speech

    Full text link
    Effective speech emotional representations play a key role in Speech Emotion Recognition (SER) and Emotional Text-To-Speech (TTS) tasks. However, emotional speech samples are more difficult and expensive to acquire compared with Neutral style speech, which causes one issue that most related works unfortunately neglect: imbalanced datasets. Models might overfit to the majority Neutral class and fail to produce robust and effective emotional representations. In this paper, we propose an Emotion Extractor to address this issue. We use augmentation approaches to train the model and enable it to extract effective and generalizable emotional representations from imbalanced datasets. Our empirical results show that (1) for the SER task, the proposed Emotion Extractor surpasses the state-of-the-art baseline on three imbalanced datasets; (2) the produced representations from our Emotion Extractor benefit the TTS model, and enable it to synthesize more expressive speech.Comment: Accepted by INTERSPEECH202

    AudioPairBank: Towards A Large-Scale Tag-Pair-Based Audio Content Analysis

    Full text link
    Recently, sound recognition has been used to identify sounds, such as car and river. However, sounds have nuances that may be better described by adjective-noun pairs such as slow car, and verb-noun pairs such as flying insects, which are under explored. Therefore, in this work we investigate the relation between audio content and both adjective-noun pairs and verb-noun pairs. Due to the lack of datasets with these kinds of annotations, we collected and processed the AudioPairBank corpus consisting of a combined total of 1,123 pairs and over 33,000 audio files. One contribution is the previously unavailable documentation of the challenges and implications of collecting audio recordings with these type of labels. A second contribution is to show the degree of correlation between the audio content and the labels through sound recognition experiments, which yielded results of 70% accuracy, hence also providing a performance benchmark. The results and study in this paper encourage further exploration of the nuances in audio and are meant to complement similar research performed on images and text in multimedia analysis.Comment: This paper is a revised version of "AudioSentibank: Large-scale Semantic Ontology of Acoustic Concepts for Audio Content Analysis
    corecore