130 research outputs found

    Provisional Report*) on the F.S. Heincke – cruise no HE 191

    Get PDF

    Biogeochemie, Fluide, Gashydrate und Paläoklima des Schwarzen Meers = Biogeochemistry, fluids, gas hydrates and paleo climate of the Black Sea : Istanbul, Trabzon, Istanbul ; Forschungsschiff Meteor, Reise Nr. M72 ; 07.02.2007 – 04.06.2007

    Get PDF
    Das Schwarze Meer ist das größte anoxische Meeresbecken der Erde. Hohe biologische Produktion in der Deckschicht und ein tiefer anoxischer Wasserkörper unterhalb der Chemokline in 100-150 m Wassertiefe füh-ren zu einzigartigen Bedingungen für mikrobielles Leben, geochemische Kreis-läufe und Sedimentationsprozesse. Gas- und Fluidemissionen aus verschiedenen geolo-gischen Formationen wie z.B. Methanaus-tritt entlang der Schelfkante oder Ausstoß von kohlenwasserstoffhaltigen Fluiden aus Schlammvulkanen in Tiefseeregionen lie-fern ein einzigartiges Umfeld für die Erfor-schung von geologischen Tiefenprozessen, geochemischen Kreisläufen, mikrobiellen Habitaten und den kontrollierenden Bedin-gungen für mikrobielle Schlüsselprozesse der Elementkreisläufe in einer permanent anoxischen Welt. Fahrtabschnitt M72/1 untersucht unter der Leitung von Dr. R. Seifert geochemische Kreisläufe und mikrobielles Leben an akti-ven Gasquellen innerhalb der Statbilitäts-zone von Gashydrat ab ca. 700 m Wasser-tiefe im Paläo-Djnepr-Gebiet. Der anschlie-ßende Fahrtabschnitt M 72/2 findet im Rahmen des EU-Projekts HERMES und des deutschen Geotechnologien-Projekts MUMM II unter der Leitung von Prof. Dr. A. Boetius statt und untersucht die Kontrol-len und Mechanismen der mikrobiellen Transporte und Umsätze chemischer Ele-mente an Methanquellen auf der Schelfkante und an Fluidaustritten von Schlammvulka-nen. Als Aktivität eines weiteren Geotech-nologienprojekts METRO widmet sich Fahrtabschnitt M 72/3 unter der Leitung von Prof. Dr. G. Bohrmann der Erforschung von Herkunft, Verteilung und Dynamik von Methan und Gashydraten in Sedimenten sowie der Untersuchung von Methanflüssen von den Sedimenten in die Wassersäule. Anschließend wird Fahrtabschnitt M 72/4seismische Untersuchungen der Migrationswege von Fluiden in den tiefen Unter-gründen des Djnepr-seep-Systems und der Schlammvulkane im Sorokin Trog unter der Leitung von Dr. J. Bialas vornehmen. Den Abschluss bildet Fahrtabschnitt M 72/5 un-ter der Leitung von Dr. C. Borowski mit Untersuchungen der geochemischen und mikrobiellen Prozesse in der geschichteten Wassersäule und in Sedimenten um die Chemokline wie in den tiefen anoxischen Becken. Die Reise M 72 wird am 07. Februar 2007 in Istanbul (Türkei) beginnen und am 04. Juni 2007 ebenfalls in Istanbul enden.The Black Sea is the largest anoxic basin on earth. High biological productivity in the oxygenated surface waters and a deep anoxic water body below the chemocline at 100–150 m water depth provide unique conditions for anaerobic microbial life, geochemical cycling and sedimentation processes which make the present day Black Sea a modern type locality for TOC-rich sedimentation and element cycling processes in the geological past. Hydrocarbon emissions from various geological settings such as methane gas seepage along large stretches of the shelf break and fluid discharges from mud volcanoes in deep-sea regions provide unique environmental conditions for studying geological subsurface processes, geochemical cycling, microbial habitats and controls on microbial key processes for element cycling in a permanent anoxic world. Geochemical cycling and microbial life at active gas seeps located in the stability zone of gas hydrates below 700 m water depth in the paleo Dnepr area will be investigated by leg M 72/1 with Dr. R. Seifert as a chief scientist. In the frame of the EU project HERMES and the German “Geotechnologies” project MUMM II, leg M 72/2 with Prof. Dr. A. Boetius as a chief scientist will focus on the controls and mechanisms of chemical element transport and breakdown by seep microbiota at shelf break gas seeps and fluid discharges of mudvolcanoes in the Sorokin Trough. As an activity of another “Geotechnologies” project METRO, leg M 72/3 with Prof. Dr. G. Bohrmann as a chief scientist will study in various geological settings, mainly of the eastern Black Sea, the origins, distributions and dynamics of methane and gas hydrates in sediments and also methane fluxes from the sediment to the water column. This will be followed by seismic investigations of fluid migration pathways in the subsurface of Sorokin Trough mud volcanoes and the paleo-Dnepr seepage system during M 72/4 with Dr. J. Bialas as a chief scientist. The final leg M 72/5 with Dr. C. Borowski as a chief scientist will lead to various areas in the western and eastern Black Sea and will focus on geochemical and microbiological processes in the stratified water column and in sediments around the chemocline and in the anoxic basins. Cruise M 72 will start on 07th February in Istanbul (Turkey) and end on 04th June again in Istanbul

    Widespread occurrence of an intranuclear bacterial parasite in vent and seep bathymodiolin mussels

    Get PDF
    Many parasitic bacteria live in the cytoplasm of multicellular animals, but only a few are known to regularly invade their nuclei. In this study, we describe the novel bacterial parasite "Candidatus Endonucleobacter bathymodioli" that invades the nuclei of deep-sea bathymodiolin mussels from hydrothermal vents and cold seeps. Bathymodiolin mussels are well known for their symbiotic associations with sulfur- and methane-oxidizing bacteria. In contrast, the parasitic bacteria of vent and seep animals have received little attention despite their potential importance for deep-sea ecosystems. We first discovered the intranuclear parasite "Ca. E. bathymodioli" in Bathymodiolus puteoserpentis from the Logatchev hydrothermal vent field on the Mid-Atlantic Ridge. Using primers and probes specific to "Ca. E. bathymodioli" we found this intranuclear parasite in at least six other bathymodiolin species from vents and seeps around the world. Fluorescence in situ hybridization and transmission electron microscopy analyses of the developmental cycle of "Ca. E. bathymodioli" showed that the infection of a nucleus begins with a single rod-shaped bacterium which grows to an unseptated filament of up to 20 ÎĽm length and then divides repeatedly until the nucleus is filled with up to 80 000 bacteria. The greatly swollen nucleus destroys its host cell and the bacteria are released after the nuclear membrane bursts. Intriguingly, the only nuclei that were never infected by "Ca. E. bathymodioli" were those of the gill bacteriocytes. These cells contain the symbiotic sulfur- and methane-oxidizing bacteria, suggesting that the mussel symbionts can protect their host nuclei against the parasite. Phylogenetic analyses showed that the "Ca. E. bathymodioli" belongs to a monophyletic clade of Gammaproteobacteria associated with marine metazoans as diverse as sponges, corals, bivalves, gastropods, echinoderms, ascidians and fish. We hypothesize that many of the sequences from this clade originated from intranuclear bacteria, and that these are widespread in marine invertebrates

    Expression patterns of mRNAs for methanotrophy and thiotrophy in symbionts of the hydrothermal vent mussel Bathymodiolus puteoserpentis

    Get PDF
    The hydrothermal vent mussel Bathymodiolus puteoserpentis (Mytilidae) from the Mid-Atlantic Ridge hosts symbiotic sulfur- and methane-oxidizing bacteria in its gills. In this study, we investigated the activity and distribution of these two symbionts in juvenile mussels from the Logatchev hydrothermal vent field (14°45′N Mid-Atlantic Ridge). Expression patterns of two key genes for chemosynthesis were examined: pmoA (encoding subunit A of the particulate methane monooxygenase) as an indicator for methanotrophy, and aprA (encoding the subunit A of the dissimilatory adenosine-5′-phosphosulfate reductase) as an indicator for thiotrophy. Using simultaneous fluorescence in situ hybridization (FISH) of rRNA and mRNA we observed highest mRNA FISH signals toward the ciliated epithelium where seawater enters the gills. The levels of mRNA expression differed between individual specimens collected in a single grab from the same sampling site, whereas no obvious differences in symbiont abundance or distribution were observed. We propose that the symbionts respond to the steep temporal and spatial gradients in methane, reduced sulfur compounds and oxygen by modifying gene transcription, whereas changes in symbiont abundance and distribution take much longer than regulation of mRNA expression and may only occur in response to long-term changes in vent fluid geochemistry
    • …
    corecore