145 research outputs found
Octopus: A Secure and Anonymous DHT Lookup
Distributed Hash Table (DHT) lookup is a core technique in structured
peer-to-peer (P2P) networks. Its decentralized nature introduces security and
privacy vulnerabilities for applications built on top of them; we thus set out
to design a lookup mechanism achieving both security and anonymity, heretofore
an open problem. We present Octopus, a novel DHT lookup which provides strong
guarantees for both security and anonymity. Octopus uses attacker
identification mechanisms to discover and remove malicious nodes, severely
limiting an adversary's ability to carry out active attacks, and splits lookup
queries over separate anonymous paths and introduces dummy queries to achieve
high levels of anonymity. We analyze the security of Octopus by developing an
event-based simulator to show that the attacker discovery mechanisms can
rapidly identify malicious nodes with low error rate. We calculate the
anonymity of Octopus using probabilistic modeling and show that Octopus can
achieve near-optimal anonymity. We evaluate Octopus's efficiency on Planetlab
with 207 nodes and show that Octopus has reasonable lookup latency and
manageable communication overhead
X-Vine: Secure and Pseudonymous Routing Using Social Networks
Distributed hash tables suffer from several security and privacy
vulnerabilities, including the problem of Sybil attacks. Existing social
network-based solutions to mitigate the Sybil attacks in DHT routing have a
high state requirement and do not provide an adequate level of privacy. For
instance, such techniques require a user to reveal their social network
contacts. We design X-Vine, a protection mechanism for distributed hash tables
that operates entirely by communicating over social network links. As with
traditional peer-to-peer systems, X-Vine provides robustness, scalability, and
a platform for innovation. The use of social network links for communication
helps protect participant privacy and adds a new dimension of trust absent from
previous designs. X-Vine is resilient to denial of service via Sybil attacks,
and in fact is the first Sybil defense that requires only a logarithmic amount
of state per node, making it suitable for large-scale and dynamic settings.
X-Vine also helps protect the privacy of users social network contacts and
keeps their IP addresses hidden from those outside of their social circle,
providing a basis for pseudonymous communication. We first evaluate our design
with analysis and simulations, using several real world large-scale social
networking topologies. We show that the constraints of X-Vine allow the
insertion of only a logarithmic number of Sybil identities per attack edge; we
show this mitigates the impact of malicious attacks while not affecting the
performance of honest nodes. Moreover, our algorithms are efficient, maintain
low stretch, and avoid hot spots in the network. We validate our design with a
PlanetLab implementation and a Facebook plugin.Comment: 15 page
Non-blind watermarking of network flows
Linking network flows is an important problem in intrusion detection as well
as anonymity. Passive traffic analysis can link flows but requires long periods
of observation to reduce errors. Active traffic analysis, also known as flow
watermarking, allows for better precision and is more scalable. Previous flow
watermarks introduce significant delays to the traffic flow as a side effect of
using a blind detection scheme; this enables attacks that detect and remove the
watermark, while at the same time slowing down legitimate traffic. We propose
the first non-blind approach for flow watermarking, called RAINBOW, that
improves watermark invisibility by inserting delays hundreds of times smaller
than previous blind watermarks, hence reduces the watermark interference on
network flows. We derive and analyze the optimum detectors for RAINBOW as well
as the passive traffic analysis under different traffic models by using
hypothesis testing. Comparing the detection performance of RAINBOW and the
passive approach we observe that both RAINBOW and passive traffic analysis
perform similarly good in the case of uncorrelated traffic, however, the
RAINBOW detector drastically outperforms the optimum passive detector in the
case of correlated network flows. This justifies the use of non-blind
watermarks over passive traffic analysis even though both approaches have
similar scalability constraints. We confirm our analysis by simulating the
detectors and testing them against large traces of real network flows
Fingerprinting Smart Devices Through Embedded Acoustic Components
The widespread use of smart devices gives rise to both security and privacy
concerns. Fingerprinting smart devices can assist in authenticating physical
devices, but it can also jeopardize privacy by allowing remote identification
without user awareness. We propose a novel fingerprinting approach that uses
the microphones and speakers of smart phones to uniquely identify an individual
device. During fabrication, subtle imperfections arise in device microphones
and speakers which induce anomalies in produced and received sounds. We exploit
this observation to fingerprint smart devices through playback and recording of
audio samples. We use audio-metric tools to analyze and explore different
acoustic features and analyze their ability to successfully fingerprint smart
devices. Our experiments show that it is even possible to fingerprint devices
that have the same vendor and model; we were able to accurately distinguish
over 93% of all recorded audio clips from 15 different units of the same model.
Our study identifies the prominent acoustic features capable of fingerprinting
devices with high success rate and examines the effect of background noise and
other variables on fingerprinting accuracy
Defending Tor from Network Adversaries: A Case Study of Network Path Prediction
The Tor anonymity network has been shown vulnerable to traffic analysis
attacks by autonomous systems and Internet exchanges, which can observe
different overlay hops belonging to the same circuit. We aim to determine
whether network path prediction techniques provide an accurate picture of the
threat from such adversaries, and whether they can be used to avoid this
threat. We perform a measurement study by running traceroutes from Tor relays
to destinations around the Internet. We use the data to evaluate the accuracy
of the autonomous systems and Internet exchanges that are predicted to appear
on the path using state-of-the-art path inference techniques; we also consider
the impact that prediction errors have on Tor security, and whether it is
possible to produce a useful overestimate that does not miss important threats.
Finally, we evaluate the possibility of using these predictions to actively
avoid AS and IX adversaries and the challenges this creates for the design of
Tor
- …