3 research outputs found

    Lateralized modulation of cortical beta power during human gait is related to arm swing

    Get PDF
    Human gait is a complex behavior requiring dynamic control of upper and lower extremities that is accompanied by cortical activity in multiple brain areas. We investigated the contribution of beta (15–30 Hz) and gamma (30–50 Hz) band electroencephalography (EEG) activity during specific phases of the gait cycle, comparing treadmill walking with and without arm swing. Modulations of spectral power in the beta band during early double support and swing phases source-localized to the sensorimotor cortex ipsilateral, but not contralateral, to the leading leg. The lateralization disappeared in the condition with constrained arms, together with an increase of activity in bilateral supplementary motor areas. By contrast, gamma band modulations that localized to the presumed leg area of sensorimotor cortex around the heel-strike events were unaffected by arm movement. Our findings demonstrate that arm swing is accompanied by considerable cortical activation that should not be neglected in gait-related neuroimaging studies

    Lateralized modulation of cortical beta power during human gait is related to arm swing

    No full text
    Summary: Human gait is a complex behavior requiring dynamic control of upper and lower extremities that is accompanied by cortical activity in multiple brain areas. We investigated the contribution of beta (15–30 Hz) and gamma (30–50 Hz) band electroencephalography (EEG) activity during specific phases of the gait cycle, comparing treadmill walking with and without arm swing. Modulations of spectral power in the beta band during early double support and swing phases source-localized to the sensorimotor cortex ipsilateral, but not contralateral, to the leading leg. The lateralization disappeared in the condition with constrained arms, together with an increase of activity in bilateral supplementary motor areas. By contrast, gamma band modulations that localized to the presumed leg area of sensorimotor cortex around the heel-strike events were unaffected by arm movement. Our findings demonstrate that arm swing is accompanied by considerable cortical activation that should not be neglected in gait-related neuroimaging studies

    A visual brain-computer interface as communication aid for patients with amyotrophic lateral sclerosis

    No full text
    OBJECTIVE: Brain-Computer Interface (BCI) spellers that make use of code-modulated Visual Evoked Potentials (cVEP) may provide a fast and more accurate alternative to existing visual BCI spellers for patients with Amyotrophic Lateral Sclerosis (ALS). However, so far the cVEP speller has only been tested on healthy participants. METHODS: We assess the brain responses, BCI performance and user experience of the cVEP speller in 20 healthy participants and 10 ALS patients. All participants performed a cued and free spelling task, and a free selection of Yes/No answers. RESULTS: 27 out of 30 participants could perform the cued spelling task with an average accuracy of 79% for ALS patients, 88% for healthy older participants and 94% for healthy young participants. All 30 participants could answer Yes/No questions freely, with an average accuracy of around 90%. CONCLUSIONS: With ALS patients typing on average 10 characters per minute, the cVEP speller presented in this paper outperforms other visual BCI spellers. SIGNIFICANCE: These results support a general usability of cVEP signals for ALS patients, which may extend far beyond the tested speller to control e.g. an alarm, automatic door, or TV within a smart home
    corecore