120 research outputs found
A Spectral Learning Approach to Range-Only SLAM
We present a novel spectral learning algorithm for simultaneous localization
and mapping (SLAM) from range data with known correspondences. This algorithm
is an instance of a general spectral system identification framework, from
which it inherits several desirable properties, including statistical
consistency and no local optima. Compared with popular batch optimization or
multiple-hypothesis tracking (MHT) methods for range-only SLAM, our spectral
approach offers guaranteed low computational requirements and good tracking
performance. Compared with popular extended Kalman filter (EKF) or extended
information filter (EIF) approaches, and many MHT ones, our approach does not
need to linearize a transition or measurement model; such linearizations can
cause severe errors in EKFs and EIFs, and to a lesser extent MHT, particularly
for the highly non-Gaussian posteriors encountered in range-only SLAM. We
provide a theoretical analysis of our method, including finite-sample error
bounds. Finally, we demonstrate on a real-world robotic SLAM problem that our
algorithm is not only theoretically justified, but works well in practice: in a
comparison of multiple methods, the lowest errors come from a combination of
our algorithm with batch optimization, but our method alone produces nearly as
good a result at far lower computational cost
Incremental Sparse GP Regression for Continuous-time Trajectory Estimation & Mapping
Recent work on simultaneous trajectory estimation and mapping (STEAM) for
mobile robots has found success by representing the trajectory as a Gaussian
process. Gaussian processes can represent a continuous-time trajectory,
elegantly handle asynchronous and sparse measurements, and allow the robot to
query the trajectory to recover its estimated position at any time of interest.
A major drawback of this approach is that STEAM is formulated as a batch
estimation problem. In this paper we provide the critical extensions necessary
to transform the existing batch algorithm into an extremely efficient
incremental algorithm. In particular, we are able to vastly speed up the
solution time through efficient variable reordering and incremental sparse
updates, which we believe will greatly increase the practicality of Gaussian
process methods for robot mapping and localization. Finally, we demonstrate the
approach and its advantages on both synthetic and real datasets.Comment: 10 pages, 10 figure
- …