25 research outputs found
Evolutionary Views on Entrepreneurial Processes: Managerial and Policy Implications
In this paper we outline an evolutionary framework of entrepreneurial processes where by firms are started, grow, and exit from the market. We explain the important of such a framework in explaining both what contextual factor affects entrepreneurial processes and in explaining the distinction and interaction between self-employment and high-potential entrepreneurship. We highlight the implications from prior empirical work using this evolutionary framework for management and policy making: Three broad implications relevant for managers and entrepreneurs interested in understanding how they can leverage their chances to position their firms as ripe for growth, and six detailed implications relevant for policy makers interested in understanding and affecting the structural conditions where by entrepreneurship can lead to enhanced growth and job creation
Rickettsia Phylogenomics: Unwinding the Intricacies of Obligate Intracellular Life
BACKGROUND: Completed genome sequences are rapidly increasing for Rickettsia, obligate intracellular alpha-proteobacteria responsible for various human diseases, including epidemic typhus and Rocky Mountain spotted fever. In light of phylogeny, the establishment of orthologous groups (OGs) of open reading frames (ORFs) will distinguish the core rickettsial genes and other group specific genes (class 1 OGs or C1OGs) from those distributed indiscriminately throughout the rickettsial tree (class 2 OG or C2OGs). METHODOLOGY/PRINCIPAL FINDINGS: We present 1823 representative (no gene duplications) and 259 non-representative (at least one gene duplication) rickettsial OGs. While the highly reductive (approximately 1.2 MB) Rickettsia genomes range in predicted ORFs from 872 to 1512, a core of 752 OGs was identified, depicting the essential Rickettsia genes. Unsurprisingly, this core lacks many metabolic genes, reflecting the dependence on host resources for growth and survival. Additionally, we bolster our recent reclassification of Rickettsia by identifying OGs that define the AG (ancestral group), TG (typhus group), TRG (transitional group), and SFG (spotted fever group) rickettsiae. OGs for insect-associated species, tick-associated species and species that harbor plasmids were also predicted. Through superimposition of all OGs over robust phylogeny estimation, we discern between C1OGs and C2OGs, the latter depicting genes either decaying from the conserved C1OGs or acquired laterally. Finally, scrutiny of non-representative OGs revealed high levels of split genes versus gene duplications, with both phenomena confounding gene orthology assignment. Interestingly, non-representative OGs, as well as OGs comprised of several gene families typically involved in microbial pathogenicity and/or the acquisition of virulence factors, fall predominantly within C2OG distributions. CONCLUSION/SIGNIFICANCE: Collectively, we determined the relative conservation and distribution of 14354 predicted ORFs from 10 rickettsial genomes across robust phylogeny estimation. The data, available at PATRIC (PathoSystems Resource Integration Center), provide novel information for unwinding the intricacies associated with Rickettsia pathogenesis, expanding the range of potential diagnostic, vaccine and therapeutic targets
Problematizing fit and survival: transforming the law of requisite variety through complexity misalignment
The law of requisite variety is widely employed in management theorizing and is linked with core strategy themes such as contingency and fit. We reflect upon requisite variety as an archetypal borrowed concept. We contrast its premises with insights from the institutional literature and commitment literature, draw propositions that set boundaries to its applicability, and review the ramifications of what we call “complexity misalignment.” In this way we contradict foundational assumptions of the law, problematize adaptation- and survival-centric views of strategizing, and theorize the role of human agency in variously complex regimes
A Collection of New Studies Using Existing and Proposed Techniques and Instrumentation for Nondestructive Testing and Analysis of Concrete Materials and Structures
A variety of studies were performed using existing and newly proposed techniques and instrumentation to further the understanding of nondestructive testing of concrete. A new combined stress wave propagation method was developed that combined the existing methods of the spectral analysis of surface waves, impact echo, and free-free resonant column experimental and analysis techniques. The method was used to determine the stiffness profile and location of embedded voids in a concrete tunnel lining modeled as a three layer concrete slab. A new equation was proposed that predicted the level of damage of concrete samples based on the functions of the change in first mode longitudinal frequency and the absorption of energy during cyclic loading to failure. During this study, new instrumentation was developed that aided in the dynamic stiffness measurements during the cyclic loading. A comparison of the static and dynamic Young’s modulus was performed. It was found that the ratio of these two moduli depend on a concrete’s strength and damping properties as well as the age of the specimen. A new equation was proposed using these three properties to determine the ratio of static to dynamic Young’s modulus. An experimental program was performed on samples of high performance self-consolidating concrete (HPSCC). The HPSCC exceeded expected values of strength and stiffness over that of regular high performance concrete. Finally, a comparison of prestress losses in prestressed bridge girders fabricated using the HPSCC was conducted. Prestress losses were measured and calculated using the American Association of State Highway and Transportation Officials (AASHTO) LRFD 2004 and 2007 Specifications. It was determined that the AASHTO LRFD 2007 Specifications most accurately predict the measured prestress losses
Development of a Nondestructive Impulse Device and Damage Model for Unreinforced Concrete
Unconstrained compression waves were measured using a newly developed, nondestructive, short impulse excitation device developed for long-term structural health monitoring. The measurements, using this innovative device, were used to determine the variation in the first longitudinal modal frequency as a function of loading magnitude and loading cycles to failure of various concrete mixes. Longitudinal frequency and cumulative energy variations were found to be a function of concrete compressive strength. These results imply that higher-strength concrete more easily absorbs energy and restricts the growth of microcracks. Based on the results, a new damage model is proposed that was shown to correlate with measured values to within 7%. This proposed model was found to have a closer correlation than Miner’s hypothesis and damage index models from other reviewed research
Recommended from our members
Integrating ontogeny and ontogenetic dependency into community assembly
Abstract:
Many studies of community assembly focus on a single ontogenetic stage (typically adults) when trying to infer assembly processes from patterns of biodiversity. This focus ignores the finding that assembly mechanisms may strongly differ between life‐stages, and the role of ontogenetic dependency: the mechanisms by which one life stage directly affects the composition of another life stage.
Within a 4‐ha forest dynamics plot in California USA, we explored how the relative importance of multiple assembly processes shifts across life stages and assessed ontogenetic dependency of seedlings on adults in woody plant communities. To assess variation in assembly processes across life stages, we examined how β‐diversity of adult and seedling communities were each influenced by space and 13 environmental variables (soils, topography) using distance‐based redundancy analysis and variation partitioning. We then assessed the ontogenetic dependency of seedlings on adults by including adult composition as a predictor in the seedling community variation partitioning.
We found differences between adult and seedling composition. For the adults, we found 18 species including pines, oaks and manzanitas characteristic of this mid‐elevation forest. For seedlings, we found 11 species, and that oaks made up 75% of all seedlings while only making up 45% of all adults. Adult β‐diversity was primarily explained by space (44.0%) with environment only explaining 18.6% and 37.4% unexplained. In contrast, most of the explained variation in seedling β‐diversity was due to ontogenetic dependency alone (13.6% explained by adult composition) with 1.6% explained by space and the environment jointly, and 62.8% unexplained.
Synthesis: Here, we describe a conceptual framework for integrating ontogeny more explicitly into community assembly research and demonstrate how different assembly processes structured adult and seedling β‐diversity in a temperate dry forest. While adult β‐diversity was largely driven by spatial processes, seedling β‐diversity was largely unexplained, with ontogenetic dependency comprising most of the explained variation. These patterns suggest that future assembly research should consider how assembly processes and their underlying mechanisms may shift with ontogeny, and that interactions between ontogenetic stages (ontogenetic dependency) are critical to consider when assessing variation in assembly processes