3,340 research outputs found
Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the western Amazon basin
Peer reviewedPublisher PD
Repulsive force support system feasibility study
A new concept in magnetic levitation and control is introduced for levitation above a plane. A set of five vertical solenoid magnets mounted flush below the plane supports and controls the model in five degrees of freedom. The compact system of levitation coils is contained in a space 2.4 m (96 in) diameter by 1 m (40 in) deep with the top of the levitation system 0.9 m (36 in) below the center line of the suspended model. The levitated model has a permanent magnet core held in position by the five parallel superconductive solenoids symmetrically located in a circle. The control and positioning system continuously corrects for model position in five dimensions using computer current pulses superimposed on the levitation coil base currents. The conceptual designs include: superconductive and Nd-Fe-B permanent magnet model cores and levitation solenoids of either superconductive, cryoresistive, or room temperature windings
Magnetic suspension and balance system advanced study, 1989 design
The objectives are to experimentally confirm several advanced design concepts on the Magnetic Suspension and Balance Systems (MSBS). The advanced design concepts were identified as potential improvements by Madison Magnetics, Inc. (MMI) during 1984 and 1985 studies of an MSBS utilizing 14 external superconductive coils and a superconductive solenoid in an airplane test model suspended in a wind tunnel. This study confirmed several advanced design concepts on magnetic suspension and balance systems. The 1989 MSBS redesign is based on the results of these experiments. Savings of up to 30 percent in supporting magnet ampere meters and 50 percent in energy stored over the 1985 design were achieved
Magnetic suspension and balance system advanced study
An improved compact design for a superconducting magnetic suspension and balance system for an 8 ft. x 8 ft. transonic wind tunnel is developed. The original design of an MSBS in NASA Cr-3802 utilized 14 external superconductive coils and a superconductive solenoid in the airplane test model suspended in a wind tunnel. The improvements are in the following areas: test model solenoid options, dynamic force limits on the model, magnet cooling options, structure and cryogenic designs, power supply specifications, and cost and performance evaluations. The improvements are: MSBS cost reduction of 28%, weight; reduction of 43%, magnet system ampere-meter reduction of 38%, helium liquifier capacity reduction by 33%, magnet system stored energy reduction by 55%, AC loss to liquid helium reduced by 76%, system power supply reduced by 68%, test coil pole strength increased by 19%, wing magnetization increased by 40%, and control frequency limit increased by 200% from 10 Hz to 30 Hz. The improvements are due to: magnetic holmium coil forms in the test model, better rare earth permanent magnets in the wings, fiberglass-epoxy structure replacing stainless steel, better coil configuration, and new saddle roll coil design
Magnetic suspension and balance system study
A compact design for a superconducting magnetic suspension and balance system is developed for a 8 ft. x 8 ft. transonic wind tunnel. The main features of the design are: a compact superconducting solenoid in the suspended airplane model; permanent magnet wings; one common liquid helium dewar for all superconducting coils; efficient new race track coils for roll torques; use of established 11 kA cryostable AC conductor; acceptable AC losses during 10 Hz control even with all steel structure; and a 560 liter/hour helium liquefier. Considerable design simplicity, reduced magnet weights, and reduced heat leak results from using one common dewar which eliminates most heavy steel structure between coils and the suspended model. Operational availability is thought to approach 100% for such magnet systems. The weight and cost of the magnet system is approximately one-third that of previous less compact designs
Single fibre action potentials in skeletal muscle related to recording distances
Single muscle fibre action potentials (SFAPs) are considered to be functions of a bioelectrical source and electrical conductivity parameters of the medium. In most model studies SFAPs are computed as a convolution of the bioelectrical source with a transfer function. Calculated peak-to-peak amplitudes of SFAPs decrease with increasing recording distances. In this paper an experimental validation of model results is presented. Experiments were carried out on the m. extensor digitorum longus (EDL) of the rat. Using a method including fluorescent labelling of the active fibre, the distance between the active fibre and the recording electrode was derived. With another method, the decline of the peak-to-peak amplitude of SFAPs detected along a multi-electrode was obtained. With both experimental methods, in general peak-to-peak amplitudes of SFAPs decreased with increasing recording distances, as was found in model results with present volume conduction theory. However, this behaviour was not found in all experiments. The rate of decline of the peak-to-peak amplitudes with recording distance was always less than in models
Enzyme-induced Formation of ß-Lactoglobulin Fibrils by AspN Endoproteinase
This paper describes a low temperature, enzymatic route to induce fibrillar structures in a protein solution. The route comprises two steps. First, ß-lactoglobulin was hydrolyzed into peptides at pH 8 and 37°C with the enzyme AspN endoproteinase, which resulted in the formation of random aggregates. After hydrolysis, the pH was lowered to 2. As a result, long fibrillar aggregates were formed which was observed using transmission electron microscopy and Thioflavin T fluorescence measurements
Welfare state reform and in-work poverty in the Netherlands
This paper describes the development of in-work poverty in the Netherlands from 1996 until 2005 and examines whether in-work poverty is related to recent social security and welfare state reforms (a new ideology of an ‘activating welfare state’ and numerous policy measures to reduce the number of social benefit claimants and to promote work). Using large-scale administrative data (from the Dutch tax services) we found that the in-work poverty risk in the Netherlands was quite constant (fluctuating between 5.3 and 6.6 percent). We expected that because of the social security reforms more individuals with vulnerable labour market positions are pushed into the labour market but are nevertheless unable to escape from poverty. This would result in more working individuals below the poverty line. However, this is not the case. But even with a constant in-work poverty risk the number of working poor individuals increases over the years. As a result, there is a gradual shift within the Dutch poverty population from non-working to working poor. We conclude that in-work poverty – once the typical face of poverty in liberal welfare states such as the USA – also became a familiar phenomenon in the Netherlands. The majority of the Dutch working poor belongs to this category for only one year. However, a limited but significant number of individuals is working poor for three years or more. In-work poverty occurs relatively often after individuals experience a transition from social benefits (particularly social assistance) to work
- …