69 research outputs found
Gliomes de bas grade et plasticité cérébrale : Implications fondamentales et cliniques
La plasticité cérébrale post-lésionnelle (PCPL) décrit l’ensemble des processus permettant au système nerveux central de se réorganiser après une atteinte physique. Depuis l’influent travail de Broca et la prise de pouvoir des modèles « localisationnistes », il est largement admis que la PCPL est limitée, voire impossible, au sein des aires fonctionnelles majeures, dites éloquentes. Pourtant, depuis quelques années, de nouvelles données issues de la chirurgie des gliomes infiltrants de bas-grade (GIBG) sont venues bousculer ce dogme. Il apparaît en effet de plus en plus clairement que des excisions cérébrales massives peuvent être intégralement compensées, pour ne laisser place à aucun déficit fonctionnel détectable. Des techniques d’imagerie pré- et post-chirurgicales, ainsi que des procédures de stimulation peropératoire, permettent de suivre la nature et la cinétique de ces compensations. Celles-ci débutent avant la chirurgie, en réaction à l’invasion tumorale, et se consolident pendant et après la procédure opératoire. Les mécanismes de la compensation pré- et post-lésionnelle impliquent les aires périlésionnelles, les structures cérébrales ipsilatérales distantes et les homologues controlatéraux des zones réséquées. De tels résultats ont d’évidentes implications fondamentales et cliniques, et ouvrent d’importantes perspectives pour la compréhension de la dynamique cérébrale et des phénomènes de plasticité.Post-lesional plasticity (PLP) describes the processes that reorganize cerebral connections after an injury. Since Broca’s influential contribution and the common endorsement of “localisationist” models of brain physiology, it has been widely admitted that PLP was limited, not to say impossible in the so-called “eloquent areas”. However, recent observations associated with the surgical treatments of low grade gliomas have called this dogma into question. Indeed, more and more evidence suggest that large cerebral resections can be compensated so efficiently that no functional deficits can be detected after the surgery. Pre and post surgical investigations based on imaging techniques, as well as intra-surgical investigations involving electrical stimulations, allow to track the nature and the temporal characteristics of these compensations. Compensatory reactions begin before the operation, in response to the tumoral growth. They remain active during and after the surgery. These compensations can involve the perilesional adjacent areas, the distant ipsilateral cerebral structures and the homologous contra-lateral regions. When considered together these results have obvious fundamental and clinical implications. They open new perspectives for understanding cerebral dynamics and the process of brain plasticity
Delayed postural control during self-generated perturbations in the frail older adults
International audiencePurpose: The aim of this study was to investigate the coordination between posture and movement in pathological aging (frailty) in comparison with normal aging, with the hypothesis that in pathological aging, postural control evolves towards a more reactive mode for which the perturbation induced by the movement is not anticipated and leads to delayed and late postural adjustments. Methods: Elderly subjects performed rapid focal arm-raising movements towards a target, from an upright standing position in two stimuli conditions: simple reaction time and choice reaction time (CRT). Hand and center of pressure (CoP) kinematics were compared between a control group and a frail group of the same age. Results: In frail individuals, the entire movement was impaired and slowed down. In addition, postural adjustments that classically precede and accompany the focal arm movement were delayed and reduced, especially in the CRT condition in which the motor prediction is more limited. Finally, a correlation between the time to CoP maximal velocity and the timed up-and-go score was observed. Conclusion: In these patients, it was concluded that the control of the CoP displacement evolved from a proactive mode in which the perturbation associated with the arm movement is anticipated toward a more reactive mode in which the perturbation is compensated by late and delayed adjustments
Alterations of EEG rhythms during motor preparation following awake brain surgery
International audienceSlow-growing, infiltrative brain tumours may modify the electrophysiological balance between the two hemispheres. To determine whether and how asymmetry of EEG rhythms during motor preparation might occur following " awake brain surgery " for this type of tumour, we recorded electroencephalograms during a simple visuo-manual reaction time paradigm performed by the patients between 3 and 12 months after surgery and compared them to a control group of 8 healthy subjects. Frequency analyses revealed imbalances between the injured and healthy hemispheres. More particularly, we observed a power increase in the δ frequency band near the lesion site and a power increase in the α and β frequency bands. Interestingly, these alterations seem to decrease for the two patients whose surgery were anterior to 9 months, independently of the size of the lesion. Reaction times did not reflect this pattern as they were clearly not inversely related to the anteriority of the surgery. Electrophysiology suggests here different processes of recovery compared to behavioral data and brings further insights for the understanding of EEG rhythms that should not be systematically confounded or assimilated with cognitive performances. EEG monitoring is rare for these patients, especially after awake brain surgery, however it is important
Can loss of sensory attenuation be accurately demonstrated using two effectors simultaneously?
Type de document : lettre Ă l'Ă©diteurInternational audienc
Conflit vitesse-précision et loi de Fitts
Dans le cas de mouvements rapides et précis dirigés vers une cible, la loi de Fitts, loi de la psychologie expérimentale qui se base sur la théorie du traitement de l'information, prédit que le temps de mouvement est une fonction linéaire d'une combinaison mathématique particulière entre l'amplitude du mouvement à réaliser et la taille de la cible (indice de difficulté). Revue de la littérature sur les différents modèles interprétatifs qui s'opposent, relatifs à la nature du contrôle qui s'opère dans ce type de mouvement, et à la nature des facteurs qui influencent la relation entre le temps de mouvement et l'index de difficult
Neurorehabilitation: From sensorimotor adaptation to motor learning, or the opposite?
International audienc
Compensation of lateralized fatigue due to referent static positional signals in an ankle-matching task
International audienc
On-line Coordination in Complex Goal-directed Movements: a Matter of Interactions between Several Loops.
International audienceMotor flexibility is the ability to rapidly modify behavior when unexpected perturbations occur. In goal directed movements, this process may be involved during the motor execution itself, by using on-line motor corrections, or off-line, on a trial-by-trial basis. A consensus has emerged to describe and unify these two dependant processes within the framework of the internal models theory in which the cerebellum is involved in error processing. However, this general framework may be incomplete to describe on-line motor corrections when complex motor coordination is involved in the task. In particular, interaction torques existing between different effectors limit the independence between different controllers that could be considered to control various body parts. In addition, recent findings suggest that different (sub)-cortical loops may be involved during orienting responses to visual stimuli but also during on-line motor corrections following visual perturbations. The way these different loops with different dynamics interact but achieve the same motor goal is an important problem in motor control. The simplest organization may be sequential, as in the well-known stretch reflex. This implies that during on-line corrections, the nervous system may be involved in a distributed fashion and that motor plans and synergies depend both on anatomical and temporal constraints. More particularly, motor plans and synergies may be stored and may differ according to the (sub)-cortical loops involved during the whole on-line correction process. Finally, questions concerning the independence (or not) of these loops remain unanswered. The case of strict independence would mean that between the various corrective loops, (i) error processing and (ii) motor plans/synergies would be different. By contrast, in a situation of dependency, it would probably mean that interactions would link lower (and faster) to upper (and longer) loops by informing these latter of the motor corrections sent by the former, similarly to an efference copy
- …