36 research outputs found
Multiple Bcl-2 family immunomodulators from vaccinia virus regulate MAPK/AP-1 activation.
Vaccinia virus (VACV) is a poxvirus and encodes many proteins that modify the host cell metabolism or inhibit the host response to infection. For instance, it is known that VACV infection can activate the mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) pathway and inhibit activation of the pro-inflammatory transcription factor NF-κB. Since NF-κB and MAPK/AP-1 share common upstream activators we investigated whether six different VACV Bcl-2-like NF-κB inhibitors can also influence MAPK/AP-1 activation. Data presented show that proteins A52, B14 and K7 each contribute to AP-1 activation during VACV infection, and when expressed individually outwith infection. B14 induced the greatest stimulation of AP-1 and further investigation showed B14 activated mainly the MAPKs ERK (extracellular signal-regulated kinase) and JNK (Jun N-terminal kinase), and their substrate c-Jun (a component of AP-1). These data indicate that the same viral protein can have different effects on distinct signalling pathways, in blocking NF-κB activation whilst leading to MAPK/AP-1 activation.This work was funded by grants from the Medical Research Council, the Wellcome Trust, the Minas Gerais State’s Foundation for Research Support (FAPEMIG) and the National Council for Scientific and Technological Development (CNPq - Brazil).This is the author accepted manuscript. The final version is available from the Microbiology Society via http://dx.doi.org/10.1099/jgv.0.00052
A study of the MAYV replication cycle: correlation between the kinetics of viral multiplication and viral morphogenesis
Mayaro virus (MAYV) is mainly found in Central and South America and causes a febrile illness followed by debilitating arthritis and arthralgia similar to chikungunya virus (CHIKV). Infection leads to long-term sequelae with a direct impact on the patient's productive capacity, resulting in economic losses. Mayaro fever is a neglected disease due to the limited epidemiological data. In Brazil, it is considered a potential public health risk with the number of cases increasing every year. Most of our knowledge about MAYV biology is inferred from data obtained from other alphaviruses as well as more recent studies on MAYV. Here, we analyzed the kinetics of viral replication through standard growth curves, quantification of intracellular and extracellular particles, and RNA quantification. We compared transmission electron microscopy data during different stages of infection. This approach allowed us to establish a chronological order of events during MAYV replication and its respective timepoints including cell entry through clathrin-mediated endocytosis occurring at 15-30 min, genome replication at 2-3 h, morphogenesis at 4 hpi, and release at 4-6 hpi. We also present evidence of uncharacterized events such as ribosome reorganization as well as clusters of early viral precursors and release through exocytosis in giant forms. Our work sheds new and specific light on the MAYV replication cycle and may contribute to future studies on the field
Detection and phylogenetic analysis of Orf virus from sheep in Brazil: a case report
<p>Abstract</p> <p>Background</p> <p><it>Orf virus </it>(ORFV), the prototype of the genus <it>Parapoxvirus </it>(PPV), is the etiological agent of contagious ecthyma, a severe exanthematic dermatitis that afflicts domestic and wild small ruminants. Although South American ORFV outbreaks have occurred and diagnosed there are no South American PPV major membrane glycoprotein B2L gene nucleotide sequences available.</p> <p>Case presentation</p> <p>an outbreak of ovine contagious ecthyma in Midwest Brazil was investigated. The diagnosis was based on clinical examinations and molecular biology techniques. The molecular characterization of the virus was done using PCR amplification, cloning and DNA sequencing of the B2L gene. The phylogenetic analysis demonstrated a high degree of identity with ORFV strains, and the isolate was closest to the ORFV-India 82/04 isolate. Another Brazilian ORFV isolate, NE1, was sequenced for comparative analysis and also showed a high degree of identity with an Asian ORFV strain.</p> <p>Conclusion</p> <p>Distinct ORFV strains are circulating in Brazil. This is the first report on the phylogenetic analysis of an ORFV in South America.</p
The ATP-sensitive potassium channel blocker glibenclamide prevents renal ischemia/reperfusion injury in rats
The ATP-sensitive potassium channel blocker glibenclamide prevents renal ischemia/reperfusion injury in rats.BackgroundRenal ischemia/reperfusion (I/R) is a complex neutrophil-mediated syndrome. Adenosine-triphosphate (ATP)-sensitive potassium (KATP) channels are involved in neutrophil migration in vivo. In the present study, we have investigated the effects of glibenclamide, a KATP channel blocker, in renal I/R injury in rats.MethodsThe left kidney of the rats was excised through a flank incision and ischemia was performed in the contralateral kidney by total interruption of renal artery flow for 45 minutes. Renal perfusion was reestablished, and the kidney and lungs were removed for analysis of vascular permeability, neutrophil accumulation, and content of cytokines [tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-10] 4 and 24 hours later. Renal function was assessed by measuring creatinine, Na+, and K+ levels in the plasma and by determination of creatinine clearance. Drugs were administered subcutaneously after the onset of ischemia.ResultsReperfusion of the ischemic kidney induced local (kidney) and remote (lung) inflammatory injury and marked renal dysfunction. Glibenclamide (20 mg/kg) significantly inhibited the reperfusion-associated increase in vascular permeability, neutrophil accumulation, increase in TNF-α levels and nuclear factor-κB (NF-κB) translocation. These inhibitory effects were noticed in the kidney and lungs. Moreover, glibenclamide markedly ameliorated the renal dysfunction at 4 and 24 hours.ConclusionTreatment with glibenclamide is associated with inhibition of neutrophil recruitment and amelioration of renal dysfunction following renal I/R. Glibenclamide may have a therapeutic role in the treatment of renal I/R injury, such as after renal transplantation
Dengue Virus 3 Genotype I in Aedes aegypti Mosquitoes and Eggs, Brazil, 2005–2006
Dengue virus type 3 genotype I was detected in Brazil during epidemics in 2002–2004. To confirm this finding, we identified this virus genotype in naturally infected field-caught Aedes aegypti mosquitoes and eggs. Results showed usefulness of virus investigations in vectors as a component of active epidemiologic surveillance
Oral treatment with Saccharomyces cerevisiae strain UFMG 905 modulates immune responses and interferes with signal pathways involved in the activation of inflammation in a murine model of typhoid fever
AbstractSalmonella spp. are Gram-negative, facultative, intracellular pathogens that cause several diarrheal diseases ranging from self-limiting gastroenteritis to typhoid fever. Previous results from our laboratory showed that Saccharomyces cerevisiae strain UFMG 905 isolated from ‘cachaça’ production presented probiotic properties due to its ability to protect against experimental infection with Salmonella enterica serovar Typhimurium. In this study, the effects of oral treatment with S. cerevisiae 905 were evaluated at the immunological level in a murine model of typhoid fever. Treatment with S. cerevisiae 905 inhibited weight loss and increased survival rate after Salmonella challenge. Immunological data demonstrated that S. cerevisiae 905 decreased levels of proinflammatory cytokines and modulated the activation of mitogen-activated protein kinases (p38 and JNK, but not ERK1/2), NF-κB and AP-1, signaling pathways which are involved in the transcriptional activation of proinflammatory mediators. Experiments in germ-free mice revealed that probiotic effects were due, at least in part, to the binding of Salmonella to the yeast. In conclusion, S. cerevisiae 905 acts as a potential new biotherapy against S. Typhimurium infection due to its ability to bind bacteria and modulate signaling pathways involved in the activation of inflammation in a murine model of typhoid fever
Passatempo Virus, a Vaccinia Virus Strain, Brazil
Passatempo virus was isolated during a zoonotic outbreak. Biologic features and molecular characterization of hemagglutinin, thymidine kinase, and vaccinia growth factor genes suggested a vaccinia virus infection, which strengthens the idea of the reemergence and circulation of vaccinia virus in Brazil. Molecular polymorphisms indicated that Passatempo virus is a different isolate
Vaccinia Virus Infection in Monkeys, Brazilian Amazon
To detect orthopoxvirus in the Brazilian Amazon, we conducted a serosurvey of 344 wild animals. Neutralizing antibodies against orthopoxvirus were detected by plaque-reduction neutralizing tests in 84 serum samples. Amplicons from 6 monkey samples were sequenced. These amplicons identified vaccinia virus genetically similar to strains from bovine vaccinia outbreaks in Brazil
Adverse Events Post Smallpox-Vaccination: Insights from Tail Scarification Infection in Mice with Vaccinia virus
Adverse events upon smallpox vaccination with fully-replicative strains of Vaccinia virus (VACV) comprise an array of clinical manifestations that occur primarily in immunocompromised patients leading to significant host morbidity/mortality. The expansion of immune-suppressed populations and the possible release of Variola virus as a bioterrorist act have given rise to concerns over vaccination complications should more widespread vaccination be reinitiated. Our goal was to evaluate the components of the host immune system that are sufficient to prevent morbidity/mortality in a murine model of tail scarification, which mimics immunological and clinical features of smallpox vaccination in humans. Infection of C57BL/6 wild-type mice led to a strictly localized infection, with complete viral clearance by day 28 p.i. On the other hand, infection of T and B-cell deficient mice (Rag1−/−) produced a severe disease, with uncontrolled viral replication at the inoculation site and dissemination to internal organs. Infection of B-cell deficient animals (µMT) produced no mortality. However, viral clearance in µMT animals was delayed compared to WT animals, with detectable viral titers in tail and internal organs late in infection. Treatment of Rag1−/− with rabbit hyperimmune anti-vaccinia serum had a subtle effect on the morbidity/mortality of this strain, but it was effective in reduce viral titers in ovaries. Finally, NUDE athymic mice showed a similar outcome of infection as Rag1−/−, and passive transfer of WT T cells to Rag1−/− animals proved fully effective in preventing morbidity/mortality. These results strongly suggest that both T and B cells are important in the immune response to primary VACV infection in mice, and that T-cells are required to control the infection at the inoculation site and providing help for B-cells to produce antibodies, which help to prevent viral dissemination. These insights might prove helpful to better identify individuals with higher risk of complications after infection with poxvirus
One More Piece in the VACV Ecological Puzzle: Could Peridomestic Rodents Be the Link between Wildlife and Bovine Vaccinia Outbreaks in Brazil?
BACKGROUND: Despite the fact that smallpox eradication was declared by the World Health Organization (WHO) in 1980, other poxviruses have emerged and re-emerged, with significant public health and economic impacts. Vaccinia virus (VACV), a poxvirus used during the WHO smallpox vaccination campaign, has been involved in zoonotic infections in Brazilian rural areas (Bovine Vaccinia outbreaks - BV), affecting dairy cattle and milkers. Little is known about VACV's natural hosts and its epidemiological and ecological characteristics. Although VACV was isolated and/or serologically detected in Brazilian wild animals, the link between wildlife and farms has not yet been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we describe for the first time, to our knowledge, the isolation of a VACV (Mariana virus - MARV) from a mouse during a BV outbreak. Genetic data, in association with biological assays, showed that this isolate was the same etiological agent causing exanthematic lesions observed in the cattle and human inhabitants of a particular BV-affected area. Phylogenetic analysis grouped MARV with other VACV isolated during BV outbreaks. CONCLUSION/SIGNIFICANCE: These data provide new biological and epidemiological information on VACV and lead to an interesting question: could peridomestic rodents be the link between wildlife and BV outbreaks