12 research outputs found
ΠΠΎΠΏΡΠ»ΡΡΠΈΠΎΠ½Π½Π°Ρ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΠΊΠ° ΠΌΠ΅ΡΠΎΠΏΠ΅Π½Π΅ΠΌΠ° Ρ Π½Π΅Π΄ΠΎΠ½ΠΎΡΠ΅Π½Π½ΡΡ Π½ΠΎΠ²ΠΎΡΠΎΠΆΠ΄Π΅Π½Π½ΡΡ
Background. Meropenem, a broad spectrum carbapenem antibiotic, is often used for newborns despite of limited data available on neonatal pharmacokinetics. Due to pharmacokinetic and pharmacodynamic differences as well as to significant changes in the human body related to growth and maturation of organs and systems, direct scaling and dosing extrapolation from adults or older children with adjustment on patients weight can result in increased risk of toxicity or treatment failures. Aims to evaluate the pharmacokinetics of meropenem in premature neonates based on therapeutic drug monitoring data in real clinical settings. Materials. Of 53 pre-term neonates included in the pharmacokinetic/pharmacodynamic analysis, in 39 (73.6%) patients, gestational age ranged from 23 to 30 weeks. Population and individual pharmacokinetic parameter values were estimated by the NPAG program from the Pmetrics package based on peak-trough therapeutic drug monitoring. Samples were assayed by high-performance liquid chromatography. One-compartment pharmacokinetic model with zero-order input and first-order elimination was used to fit concentration data and to predict pharmacokinetic parameter (%T MIC of free drug) for virtual patients with simulated fast, moderate and slow meropenem elimination received different dosage by minimum inhibitory concentration (MIC) level. Univariate and multivariate regression analysis was used to evaluate the influence of patients covariates (gestational age, postnatal age, postconceptual age, body weight, creatinine clearance calculated by Schwartz formula, etc) on estimated meropenem pharmacokinetic parameters. Results. The identified population pharmacokinetic parameters of meropenem in pre-term newborns (elimination half-lives T1/2 = 1.93 0.341 h; clearance CL = 0.26 0.085 L/h/ kg; volume of distribution V = 0.71 0.22 L/h) were in good agreement with those published in the literature for adults, neonates and older children. Pharmacokinetic/pharmacodynamic modeling demonstrated that a meropenem dosage regimen of 90 mg/kg/day administered using prolonged 3-hour infusion every 8 hours should be considered as potentially effective therapy if nosocomial infections with resistant organisms (MIC 8 mg/L) are treated. Conclusions. Neonates and especially pre-term neonates have a great pharmacokinetic variability. Meropenem dosing in premature newborns derived from population pharmacokinetic/pharmacodynamic model can partly overcome the variability, but not all pharmacokinetic variability can be explained by covariates in a model. Further personalizing based on Bayesian forecasting approach and a patients therapeutic drug monitoring data can help to achieve desired pharmacodynamic target.ΠΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅. ΠΠ΅ΡΠΎΠΏΠ΅Π½Π΅ΠΌ, Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΠΊ Π³ΡΡΠΏΠΏΡ ΠΊΠ°ΡΠ±Π°ΠΏΠ΅Π½Π΅ΠΌΠΎΠ² ΡΠΈΡΠΎΠΊΠΎΠ³ΠΎ ΡΠΏΠ΅ΠΊΡΡΠ°, ΡΠ°ΡΡΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π΄Π»Ρ Π»Π΅ΡΠ΅Π½ΠΈΡ Π½ΠΎΠ²ΠΎΡΠΎΠΆΠ΄Π΅Π½Π½ΡΡ
, Π½Π΅ΡΠΌΠΎΡΡΡ Π½Π° Π½Π°Π»ΠΈΡΠΈΠ΅ Π²Π΅ΡΡΠΌΠ° ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΡΡ
Π΄Π°Π½Π½ΡΡ
ΠΎ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΠΊΠ΅ Π² ΡΡΠΎΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΈ. ΠΠ·-Π·Π° ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ°Π·Π»ΠΈΡΠΈΠΉ, Π° ΡΠ°ΠΊΠΆΠ΅ Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ, ΡΠ²ΡΠ·Π°Π½Π½ΡΡ
Ρ ΡΠΎΡΡΠΎΠΌ ΠΈ ΡΠΎΠ·ΡΠ΅Π²Π°Π½ΠΈΠ΅ΠΌ ΠΎΡΠ³Π°Π½ΠΎΠ² ΠΈ ΡΠΈΡΡΠ΅ΠΌ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ°, ΠΏΡΡΠΌΠΎΠ΅ ΠΌΠ°ΡΡΡΠ°Π±ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΡΠΊΡΡΡΠ°ΠΏΠΎΠ»ΡΡΠΈΡ ΡΠ΅ΠΆΠΈΠΌΠΎΠ² Π΄ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ, ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π½ΡΡ
Π²Π·ΡΠΎΡΠ»ΡΠΌ ΠΈΠ»ΠΈ Π΄Π΅ΡΡΠΌ ΡΡΠ°ΡΡΠ΅Π³ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ°, Ρ ΠΊΠΎΡΡΠ΅ΠΊΡΠΈΠ΅ΠΉ Π½Π° ΠΌΠ°ΡΡΡ ΡΠ΅Π»Π° ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° ΠΌΠΎΠ³ΡΡ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡΡ ΠΊ Π²ΡΡΠΎΠΊΠΎΠΌΡ ΡΠΈΡΠΊΡ ΡΠΎΠΊΡΠΈΡΠ½ΠΎΡΡΠΈ ΠΈΠ»ΠΈ ΠΎΡΡΡΡΡΡΠ²ΠΈΡ ΡΡΡΠ΅ΠΊΡΠ° ΡΠ΅ΡΠ°ΠΏΠΈΠΈ. Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΈ ΠΌΠ΅ΡΠΎΠΏΠ΅Π½Π΅ΠΌΠ° Ρ Π½Π΅Π΄ΠΎΠ½ΠΎΡΠ΅Π½Π½ΡΡ
Π½ΠΎΠ²ΠΎΡΠΎΠΆΠ΄Π΅Π½Π½ΡΡ
Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π΄Π°Π½Π½ΡΡ
ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π° Π² ΡΠ΅Π°Π»ΡΠ½ΠΎΠΉ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅. ΠΠ΅ΡΠΎΠ΄Ρ. ΠΠ· 53 Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ
Π² ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ/ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· Π½Π΅Π΄ΠΎΠ½ΠΎΡΠ΅Π½Π½ΡΡ
Π½ΠΎΠ²ΠΎΡΠΎΠΆΠ΄Π΅Π½Π½ΡΡ
Ρ 39 (73,6%) Π³Π΅ΡΡΠ°ΡΠΈΠΎΠ½Π½ΡΠΉ Π²ΠΎΠ·ΡΠ°ΡΡ Π±ΡΠ» Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ
2330 Π½Π΅Π΄. ΠΠΎΠΏΡΠ»ΡΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΈ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π±ΡΠ»ΠΈ ΠΎΡΠ΅Π½Π΅Π½Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ NPAG ΠΈΠ· ΠΏΠ°ΠΊΠ΅ΡΠ° Pmetrics Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π΄Π°Π½Π½ΡΡ
ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π° (ΡΡΡΠ°ΡΠ΅Π³ΠΈΡ ΠΏΠΈΠΊΡΠΏΠ°Π΄). ΠΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π²ΡΡΠΎΠΊΠΎΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ. ΠΠ΄Π½ΠΎΠΊΠ°ΠΌΠ΅ΡΠ½Π°Ρ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ Ρ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠΌ Π½ΡΠ»Π΅Π²ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° ΠΏΠΎΡΡΡΠΏΠ»Π΅Π½ΠΈΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ° Π² ΠΊΠ°ΠΌΠ΅ΡΡ ΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠΌ ΡΠ»ΠΈΠΌΠΈΠ½Π°ΡΠΈΠΈ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»Π°ΡΡ Π΄Π»Ρ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π΄Π°Π½Π½ΡΡ
ΠΈ ΡΠ°ΡΡΠ΅ΡΠ° ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ° (%T ΠΠΠ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ°) Π΄Π»Ρ Π²ΠΈΡΡΡΠ°Π»ΡΠ½ΡΡ
ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ², Ρ ΠΊΠΎΡΠΎΡΡΡ
ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π»ΠΎΡΡ Π±ΡΡΡΡΠΎΠ΅, ΡΡΠ΅Π΄Π½Π΅Π΅ ΠΈ ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π²ΡΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠΏΠ΅Π½Π΅ΠΌΠ° ΠΏΡΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠ΅ΠΆΠΈΠΌΠΎΠ² Π΄ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π΄Π»Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΡΠΎΠ²Π½Π΅ΠΉ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π°Π²Π»ΡΡΡΠ΅ΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ (ΠΠΠ). ΠΠ΄Π½ΠΎ-ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡΠ°ΠΊΡΠΎΡΠ½ΡΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΎΠ½Π½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΡΠΈΠΌΠ΅Π½ΡΠ»ΡΡ Π΄Π»Ρ Π²ΡΡΠ²Π»Π΅Π½ΠΈΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ (ΠΊΠΎΠ²Π°ΡΠΈΠ°Ρ) ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° (Π³Π΅ΡΡΠ°ΡΠΈΠΎΠ½Π½ΡΠΉ Π²ΠΎΠ·ΡΠ°ΡΡ, ΠΏΠΎΡΡΠ½Π°ΡΠ°Π»ΡΠ½ΡΠΉ Π²ΠΎΠ·ΡΠ°ΡΡ, ΠΏΠΎΡΡΠΊΠΎΠ½ΡΠ΅ΠΏΡΡΠ°Π»ΡΠ½ΡΠΉ Π²ΠΎΠ·ΡΠ°ΡΡ, ΠΌΠ°ΡΡΠ° ΡΠ΅Π»Π°, ΠΊΠ»ΠΈΡΠ΅Π½Ρ ΠΊΡΠ΅Π°ΡΠΈΠ½ΠΈΠ½Π°, ΡΠ°ΡΡΡΠΈΡΠ°Π½Π½ΡΠΉ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ Π¨Π²Π°ΡΡΠ°, ΠΈ Π΄Ρ.), Π²Π»ΠΈΡΡΡΠΈΡ
Π½Π° ΠΎΡΠ΅Π½Π΅Π½Π½ΡΠ΅ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΌΠ΅ΡΠΎΠΏΠ΅Π½Π΅ΠΌΠ°. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΌΠ΅ΡΠΎΠΏΠ΅Π½Π΅ΠΌΠ° Ρ Π½Π΅Π΄ΠΎΠ½ΠΎΡΠ΅Π½Π½ΡΡ
Π½ΠΎΠ²ΠΎΡΠΎΠΆΠ΄Π΅Π½Π½ΡΡ
(ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΏΠΎΠ»ΡΠ²ΡΠ²Π΅Π΄Π΅Π½ΠΈΡ T1/2 = 1,93 0,341 Ρ; ΠΊΠ»ΠΈΡΠ΅Π½Ρ CL = 0,26 0,085 Π»/Ρ/ΠΊΠ³; ΠΎΠ±ΡΠ΅ΠΌ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ V = 0,71 0,22 Π»/Ρ) Ρ
ΠΎΡΠΎΡΠΎ ΡΠΎΠ³Π»Π°ΡΡΡΡΡΡ Ρ ΠΎΠΏΡΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Π½ΡΠΌΠΈ Π² Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅ Π΄Π»Ρ Π²Π·ΡΠΎΡΠ»ΡΡ
, Π½ΠΎΠ²ΠΎΡΠΎΠΆΠ΄Π΅Π½Π½ΡΡ
ΠΈ Π΄Π΅ΡΠ΅ΠΉ ΡΡΠ°ΡΡΠ΅Π³ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ°. Π€Π°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅/ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, ΡΡΠΎ ΡΠ΅ΠΆΠΈΠΌ Π΄ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ 90 ΠΌΠ³/ΠΊΠ³/ΡΡΡ Ρ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠΌ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ 8 Ρ ΠΈ 3-ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΠΈΠ½ΡΡΠ·ΠΈΠ΅ΠΉ Π² Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π΅ ΡΠ»ΡΡΠ°Π΅Π² ΠΈΠΌΠ΅Π΅Ρ Π²ΡΡΠΎΠΊΡΡ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π»ΠΈ ΠΏΡΠΈ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
Π²Π½ΡΡΡΠΈΠ±ΠΎΠ»ΡΠ½ΠΈΡΠ½ΡΡ
ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΉ, Π΄Π°ΠΆΠ΅ Π΄Π»Ρ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΡΡ
Π²ΠΎΠ·Π±ΡΠ΄ΠΈΡΠ΅Π»Π΅ΠΉ Ρ ΠΠΠ 8 ΠΌΠ³/Π» ΠΈ Π²ΡΡΠ΅. ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΠΎΠ²ΠΎΡΠΎΠΆΠ΄Π΅Π½Π½ΡΠΌ ΠΈ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ Π½Π΅Π΄ΠΎΠ½ΠΎΡΠ΅Π½Π½ΡΠΌ Π½ΠΎΠ²ΠΎΡΠΎΠΆΠ΄Π΅Π½Π½ΡΠΌ ΡΠ²ΠΎΠΉΡΡΠ²Π΅Π½Π½Π° Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π²Π°ΡΠΈΠ°Π±Π΅Π»ΡΠ½ΠΎΡΡΡ. ΠΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠΏΠ΅Π½Π΅ΠΌΠ° Π½Π΅Π΄ΠΎΠ½ΠΎΡΠ΅Π½Π½ΡΠΌ Π½ΠΎΠ²ΠΎΡΠΎΠΆΠ΄Π΅Π½Π½ΡΠΌ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ/ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΌΠΎΠΆΠ΅Ρ ΡΠ°ΡΡΠΈΡΠ½ΠΎ ΡΡΠ΅ΡΡΡ ΡΡΡ Π²Π°ΡΠΈΠ°Π±Π΅Π»ΡΠ½ΠΎΡΡΡ, Π½ΠΎ ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ ΠΎΠ±ΡΡΡΠ½ΠΈΡΡ Π΅Π΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΠ²Π°ΡΠΈΠ°Ρ Π½Π΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅ΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠΌ. ΠΠ΅ΡΡΠΎΠ½Π°Π»ΠΈΠ·Π°ΡΠΈΡ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π±Π°ΠΉΠ΅ΡΠΎΠ²ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΠΈ Π΄Π°Π½Π½ΡΡ
ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π° ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° ΠΌΠΎΠΆΠ΅Ρ ΠΏΠΎΠΌΠΎΡΡ Π² Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΠΈ Π²ΡΠ±ΡΠ°Π½Π½ΠΎΠΉ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π»ΠΈ
Population pharmacokinetic analysis of levetiracetam therapeutic drug monitoring data of preterm newborns with neonatal seizures
Neonatal seizures remain a significant neurologic condition with higher incidences in preterm newborns. There still is a lack of evidence-based recommendations for the optimal choice of antiseizure drug (ASD) and effective dosing in term and preterm neonates. Phenobarbital continues to be widely used as the first-line ASD in neonates. Levetiracetam (LEV) is a relatively new ASD with favorable safety profile and positive efficacy outcomes for neonatal seizures. LEV is increasingly being used to treat seizures in newborns. Objective of the research: the population PK modeling based on TDM data assessed at intravenous (IV) LEV monotherapy as the first-line ASD in preterm newborns. Materials and methods: of 45 preterm neonates included in the LEV retrospective PK analysis, gestational age (GA) ranged from 22 to 36 weeks, in 30 (67%) patients GA was 22-28 weeks. Population and individual PK parameter values were estimated by the NPAG program from the Pmetrics package based on peak-trough TDM. Samples were assayed by high-performance liquid chromatography. One-compartment PK model with zero-order input and first-order elimination was used to fit LEV concentration data from 101 TDM occasions (201 measured concentrations totally). In the majority of cases, the LEV daily doses were 30 mg/kg/day (ranged from 20 up to 50 mg/kg/day), administered twice a day with 12-hour dosing interval in divided doses. Univariate and multivariate regression analysis was used to evaluate the influence of patientβs covariates on distribution of the estimated LEV PK parameters. Results: when compared to adults and older children, preterm newborns were found to have in average a higher volume of distribution (V), longer half-life (T1/2) and lower clearance (CL). Taking into consideration the lower GA and PCA of the neonates included into this PK study, the identified population PK parameters of LEV in preterm newborns were in good agreement with those published in the literature for neonates: the estimated T1/2 values have a 20% to 80% range of 11 to 32 hrs, the median values for CL and V were 1,22 ml/min/kg and 1,5 L/kg, respectively. LEV was tolerated well in the study age-group, no serious adverse events were evident during or after 30-min IV LEV infusions. Conclusion: the study revealed significant variability in the estimated PK parameters in preterm infants. The results of regression analysis showed that it is not possible to fully explain PK variability using covariates in a statistical model. Personalizing of the LEV anti-seizure treatment for the preterm newborns can be based on the Bayesian forecasting approach and a patientβs TDM data. Β© 2021, Pediatria Ltd.. All rights reserved
Population pharmacokinetics of meropenem in preterm infants [ΠΠΎΠΏΡΠ»ΡΡΠΈΠΎΠ½Π½Π°Ρ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΠΊΠ° ΠΌΠ΅ΡΠΎΠΏΠ΅Π½Π΅ΠΌΠ° Ρ Π½Π΅Π΄ΠΎΠ½ΠΎΡΠ΅Π½Π½ΡΡ Π½ΠΎΠ²ΠΎΡΠΎΠΆΠ΄Π΅Π½Π½ΡΡ ]
Background. Meropenem, a broad spectrum carbapenem antibiotic, is often used for newborns despite of limited data available on neonatal pharmacokinetics. Due to pharmacokinetic and pharmacodynamic differences as well as to significant changes in the human body related to growth and maturation of organs and systems, direct scaling and dosing extrapolation from adults or older children with adjustment on patient's weight can result in increased risk of toxicity or treatment failures. Aims - to evaluate the pharmacokinetics of meropenem in premature neonates based on therapeutic drug monitoring data in real clinical settings. Materials. Of 53 pre-term neonates included in the pharmacokinetic/pharmacodynamic analysis, in 39 (73.6%) patients, gestational age ranged from 23 to 30 weeks. Population and individual pharmacokinetic parameter values were estimated by the NPAG program from the Pmetrics package based on peak-trough therapeutic drug monitoring. Samples were assayed by high-performance liquid chromatography. One-compartment pharmacokinetic model with zero-order input and first-order elimination was used to fit concentration data and to predict pharmacokinetic parameter (%T > MIC of free drug) for virtual βpatientsβ with simulated fast, moderate and slow meropenem elimination βreceivedβ different dosage by minimum inhibitory concentration (MIC) level. Univariate and multivariate regression analysis was used to evaluate the influence of patient's covariates (gestational age, postnatal age, postconceptual age, body weight, creatinine clearance calculated by Schwartz formula, etc) on estimated meropenem pharmacokinetic parameters. Results. The identified population pharmacokinetic parameters of meropenem in pre-term newborns (elimination half-lives T1/2 = 1.93 Β± 0.341 h; clearance CL = 0.26 Β± 0.085 L/h/kg; volume of distribution V = 0.71 Β± 0.22 L/h) were in good agreement with those published in the literature for adults, neonates and older children. Pharmacokinetic/pharmacodynamic modeling demonstrated that a meropenem dosage regimen of 90 mg/kg/day administered using prolonged 3-hour infusion every 8 hours should be considered as potentially effective therapy if nosocomial infections with resistant organisms (MIC β₯ 8 mg/L) are treated. Conclusions. Neonates and especially pre-term neonates have a great pharmacokinetic variability. Meropenem dosing in premature newborns derived from population pharmacokinetic/pharmacodynamic model can partly overcome the variability, but not all pharmacokinetic variability can be explained by covariates in a model. Further personalizing based on Bayesian forecasting approach and a patient's therapeutic drug monitoring data can help to achieve desired pharmacodynamic target. Β© 2021 Izdatel'stvo Meditsina. All rights reserved
ΠΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π° Π»Π΅Π²Π΅ΡΠΈΡΠ°ΡΠ΅ΡΠ°ΠΌΠ° Ρ Π½ΠΎΠ²ΠΎΡΠΎΠΆΠ΄Π΅Π½Π½ΡΡ
Neonatal seizures in fullterm and preterm infants represent a common neurological syndrome. Levetiracetam (LEV) is one of the new and widely prescribed secondor thirdline antiepileptic drug for the treatment of seizures. Routine therapeutic drug monitoring of LEV was not recommended due to its almost ideal pharmacokinetic profile: linear pharmacokinetics, predictable doseconcentration relationship, wide therapeutic index, favourable safety profile, and unlikely clinically significant drugdrug pharmacokinetic interactions. In newborns, drug pharmacokinetics may be under the influence of maturation process. LEV pharmacokinetics in newborns appears to be age (gestational, postnatal) dependent and highly variable within the age ranges. These aspects make therapeutic drug monitoring a useful procedure for therapy optimization in this specific patient population. In population modeling based on therapeutic drug monitoring and nonlinear mixed effects models, covariates were found that should significantly affect the LEV clearance and volume of distribution in newborns - creatinine clearance and total body weight. Using of these regression equations can help to adjust the LEV doses without the patient's measured concentration data. But the significant magnitudes of the interindividual variability remaining in these final regression models justify the need for therapeutic drug monitoring and Bayesian adaptive control for personalization of LEV dosage regimens in neonates.ΠΠ΅ΠΎΠ½Π°ΡΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠ΄ΠΎΡΠΎΠ³ΠΈ Ρ Π΄ΠΎΠ½ΠΎΡΠ΅Π½Π½ΡΡ
ΠΈ Π½Π΅Π΄ΠΎΠ½ΠΎΡΠ΅Π½Π½ΡΡ
Π½ΠΎΠ²ΠΎΡΠΎΠΆΠ΄Π΅Π½Π½ΡΡ
(ΠΠ ) ΡΠ²Π»ΡΡΡΡΡ ΡΠ°ΡΡΠΎ Π²ΡΡΡΠ΅ΡΠ°ΡΡΠΈΠΌΡΡ Π½Π΅Π²ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠΈΠ½Π΄ΡΠΎΠΌΠΎΠΌ. ΠΠ΄Π½ΠΈΠΌ ΠΈΠ· Π½ΠΎΠ²ΡΡ
ΠΈ ΡΠΈΡΠΎΠΊΠΎ Π½Π°Π·Π½Π°ΡΠ°Π΅ΠΌΡΡ
ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠΏΠΈΠ»Π΅ΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² 2-3ΠΉ Π»ΠΈΠ½ΠΈΠΈ Π΄Π»Ρ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΡΡΠ΄ΠΎΡΠΎΠ³ Ρ ΠΠ ΡΠ²Π»ΡΠ΅ΡΡΡ Π»Π΅Π²Π΅ΡΠΈΡΠ°ΡΠ΅ΡΠ°ΠΌ (LEV). Π ΡΡΠΈΠ½Π½ΠΎΠ΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π° LEV Π½Π΅ Π±ΡΠ»ΠΎ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½ΠΎ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°Ρ ΠΈΠΌΠ΅Π΅Ρ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ ΠΈΠ΄Π΅Π°Π»ΡΠ½ΡΠΉ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΡΠΎΡΠΈΠ»Ρ: Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΠΊΠ°, ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·ΡΠ΅ΠΌΠΎΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄ΠΎΠ·Π°-ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ, Π²ΡΡΠΎΠΊΠΈΠΉ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈΠ½Π΄Π΅ΠΊΡ, Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΠ½ΡΠΉ ΠΏΡΠΎΡΠΈΠ»Ρ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ, ΠΌΠ°Π»ΠΎΠ²Π΅ΡΠΎΡΡΠ½ΠΎΠ΅ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΠΎΠ΅ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ²Π»ΠΈΡΠ½ΠΈΠ΅ Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ°ΠΌΠΈ. Π£ ΠΠ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π²ΡΠ΅ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠΈΠ΅ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΠΊΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ°, ΠΌΠΎΠ³ΡΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡΡ ΠΏΠΎΠ΄ Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ Π΅ΡΠ΅ Π½Π΅Π·Π°ΠΊΠΎΠ½ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΡΠΎΠ·ΡΠ΅Π²Π°Π½ΠΈΡ. Π€Π°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΠΊΠ° LEV Ρ ΠΠ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ° (Π³Π΅ΡΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ, ΠΏΠΎΡΡΠ½Π°ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ), Π½ΠΎ Π²Π½ΡΡΡΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ½ΡΡ
Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ΠΎΠ² Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΠΌΠ΅ΠΆΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½Π°Ρ Π²Π°ΡΠΈΠ°Π±Π΅Π»ΡΠ½ΠΎΡΡΡ. ΠΡΠ΅ ΡΡΠΎ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΠ΅Ρ ΠΎ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π° Π΄Π»Ρ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ LEV Π² ΡΡΠΎΠΉ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ². ΠΡΠΈ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΎΠ½Π½ΠΎΠΌ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π΄Π°Π½Π½ΡΡ
ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π° ΠΈ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ
ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΡ
ΡΡΡΠ΅ΠΊΡΠΎΠ² Π±ΡΠ»ΠΈ Π²ΡΡΠ²Π»Π΅Π½Ρ ΠΊΠΎΠ²Π°ΡΠΈΠ°ΡΡ, Π·Π½Π°ΡΠΈΠΌΠΎ Π²Π»ΠΈΡΡΡΠΈΠ΅ Π½Π° ΠΊΠ»ΠΈΡΠ΅Π½Ρ ΠΈ ΠΎΠ±ΡΠ΅ΠΌ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ LEV Ρ ΠΠ , - ΠΊΠ»ΠΈΡΠ΅Π½Ρ ΠΊΡΠ΅Π°ΡΠΈΠ½ΠΈΠ½Π° ΠΈ ΠΌΠ°ΡΡΠ° ΡΠ΅Π»Π°. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ°ΠΊΠΈΡ
ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΎΠ½Π½ΡΡ
ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ΅Ρ ΠΏΠΎΠΌΠΎΡΡ Π² ΠΊΠΎΡΡΠ΅ΠΊΡΠΈΡΠΎΠ²ΠΊΠ΅ Π΄ΠΎΠ· LEV Π±Π΅Π· ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°. ΠΠ΄Π½Π°ΠΊΠΎ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½Π°Ρ Π΄ΠΎΠ»Ρ ΠΌΠ΅ΠΆΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΠΎΠΉ Π²Π°ΡΠΈΠ°Π±Π΅Π»ΡΠ½ΠΎΡΡΠΈ, ΠΊΠΎΡΠΎΡΡΡ Π½Π΅ ΡΠ΄Π°Π΅ΡΡΡ ΠΎΠ±ΡΡΡΠ½ΠΈΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΠ΅Ρ Π² ΠΏΠΎΠ»ΡΠ·Ρ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π° ΠΈ ΠΠ°ΠΉΠ΅ΡΠΎΠ²ΡΠΊΠΎΠ³ΠΎ Π°Π΄Π°ΠΏΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° Π΄Π»Ρ ΠΏΠ΅ΡΡΠΎΠ½Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΡΠ΅ΠΆΠΈΠΌΠΎΠ² Π΄ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ LEV Ρ ΠΠ
Π€Π°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΠΊΠ° Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² ΠΏΡΠΈ ΠΌΡΠΊΠΎΠ²ΠΈΡΡΠΈΠ΄ΠΎΠ·Π΅ Π² Π΄Π΅ΡΡΠΊΠΎΠΌ Π²ΠΎΠ·ΡΠ°ΡΡΠ΅
Cystic fibrosis (CF) is one of the most frequent hereditary multisystem disease. Pathogenesis of lung damage includes development of chronic microbial-inflammatory process on the background of severe violation of mucociliary clearance. Proper and timely antibiotic therapy of infectious process determines the disease prognosis greatly. To select an effective antibacterial drugs dosing regimen, it is necessary to take into account pathophysiological features of cystic fibrosis, which determine the unique pharmacokinetics (PK) in this category of patients. The review describes significant effect of age on such PK processes as: absorption, distribution, biotransformation, and elimination. The influence of factors affecting pharmacokinetics of antibacterial drugs in cystic fibrosis in childhood (transit through digestive tube, state of biliary system, biotransformation processes, etc.) is disclosed. Studying pharmacokinetics of antibacterial drugs in children with CF will increase the effectiveness of treatment, reduce the risks of antibiotic resistance, and improve the overall prognosis.ΠΡΠΊΠΎΠ²ΠΈΡΡΠΈΠ΄ΠΎΠ· (ΠΠ) ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΡΠ°ΠΌΡΡ
ΡΠ°ΡΡΡΡ
Π½Π°ΡΠ»Π΅Π΄ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΌΡΠ»ΡΡΠΈΡΠΈΡΡΠ΅ΠΌΠ½ΡΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. Π ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅Π·Π΅ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡ Π»Π΅Π³ΠΊΠΈΡ
Π»Π΅ΠΆΠΈΡ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ Ρ
ΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠΈΠΊΡΠΎΠ±Π½ΠΎ-Π²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° Π½Π° ΡΠΎΠ½Π΅ Π³ΡΡΠ±ΠΎΠ³ΠΎ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΠΌΡΠΊΠΎΡΠΈΠ»ΠΈΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΊΠ»ΠΈΡΠ΅Π½ΡΠ°. ΠΠ΄Π΅ΠΊΠ²Π°ΡΠ½Π°Ρ ΠΈ ΡΠ²ΠΎΠ΅Π²ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ΅ΡΠ°ΠΏΠΈΡ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ ΠΏΡΠΎΠ³Π½ΠΎΠ· Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡ. ΠΠ»Ρ Π²ΡΠ±ΠΎΡΠ° ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠ΅ΠΆΠΈΠΌΠ° Π΄ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΡΡΠΈΡΡΠ²Π°ΡΡ ΠΏΠ°ΡΠΎΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΌΡΠΊΠΎΠ²ΠΈΡΡΠΈΠ΄ΠΎΠ·Π°, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΠ±ΡΡΠ»Π°Π²Π»ΠΈΠ²Π°ΡΡ ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½ΠΎΡΡΡ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΈ (Π€Π) Ρ ΡΡΠΎΠΉ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ². Π ΠΎΠ±Π·ΠΎΡΠ΅ ΠΎΠΏΠΈΡΠ°Π½ΠΎ Π·Π½Π°ΡΠΈΠΌΠΎΠ΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π²ΠΎΠ·ΡΠ°ΡΡΠ° Π½Π° Π€Π ΠΏΡΠΎΡΠ΅ΡΡΡ, ΡΠ°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ: Π°Π±ΡΠΎΡΠ±ΡΠΈΡ, ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, Π±ΠΈΠΎΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΈ ΡΠ»ΠΈΠΌΠΈΠ½Π°ΡΠΈΡ. Π Π°ΡΠΊΡΡΡΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΠ°ΠΊΡΠΎΡΠΎΠ², Π²Π»ΠΈΡΡΡΠΈΡ
Π½Π° ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΠΊΡ Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² ΠΏΡΠΈ ΠΌΡΠΊΠΎΠ²ΠΈΡΡΠΈΠ΄ΠΎΠ·Π΅ Π² Π΄Π΅ΡΡΠΊΠΎΠΌ Π²ΠΎΠ·ΡΠ°ΡΡΠ΅ (ΡΡΠ°Π½Π·ΠΈΡ ΠΏΠΎ ΠΏΠΈΡΠ΅Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΡΠ±ΠΊΠ΅, ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ Π±ΠΈΠ»ΠΈΠ°ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, ΠΏΡΠΎΡΠ΅ΡΡΡ Π±ΠΈΠΎΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΈ Ρ. Π΄.). ΠΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΈ Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² Ρ Π΄Π΅ΡΠ΅ΠΉ, Π±ΠΎΠ»ΡΠ½ΡΡ
ΠΠ, ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ ΠΏΠΎΠ²ΡΡΠΈΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΠ³ΠΎ Π»Π΅ΡΠ΅Π½ΠΈΡ, ΡΠ½ΠΈΠ·ΠΈΡΡ ΡΠΈΡΠΊΠΈ Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΠΊΠΎΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΈ Π² ΡΠ΅Π»ΠΎΠΌ ΡΠ»ΡΡΡΠΈΡΡ ΠΏΡΠΎΠ³Π½ΠΎΠ·
Safety, pharmacokinetics and pharmacodynamics of an original glycoprotein IIb/IIIa inhibitor in healthy volunteers: results of the clinical trial [Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ, ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΈ ΠΈ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΎΡΠΈΠ³ΠΈΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π°Π½ΡΠΈΡΡΠΎΠΌΠ±ΠΎΡΠΈΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ° ΠΈΠ· Π³ΡΡΠΏΠΏΡ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠΎΠ² Π³Π»ΠΈΠΊΠΎΠΏΡΠΎΡΠ΅ΠΈΠ½ΠΎΠ²ΡΡ IIb/IIIa-ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠ² Ρ Π·Π΄ΠΎΡΠΎΠ²ΡΡ Π΄ΠΎΠ±ΡΠΎΠ²ΠΎΠ»ΡΡΠ΅Π²]
Aim. To study the tolerability, safety, pharmacokinetics (PK) and pharmacodynamics of single intravenous infusions of Angipur in healthy male volunteers. Material and methods. The Phase I trial included 20 healthy male volunteers (mean age, 30,8Β±7,7 years; mean body weight, 77,4Β±12,1 kg). Angipur (0,02% concentrate for solution for infusion) was administered to every subject in single doses 0,015, 0,05, 0,09 mg/kg for 3 consecutive days. Volunteers were divided in 6 groups (1, 1, 3, 5, 5, 5); every following group was recruited only after the previous one finished the study. The following were assessed: rate and severity of adverse events (AEs), key PK parameters of Angipur and its antiplatelet activity by impedance aggregometry. Results. No moderate or severe AEs, as well as no serious AEs were reported according to obtained data of clinical and laboratory monitoring of healthy subjects. Totally 6 mild AEs were registered in 4 subjects. Four AEs (mild hematological deviations and episode of nose bleed) were classified as possibly related to study drug and 1 AE (positive fecal occult blood test) β probably related. Key PK parameters of Angipur in single intravenous doses 0,015, 0,05 ΠΈ 0,09 mg/kg were determined as follows: Cmax β 12,44Β±4,689, 46,10Β±14,295, 92,48Β±33,896 ng/ml; Vd β 304,01Β±55,300, 299,67Β±64,244, 252,96Β±47,790 l; T1/2 β 6,72Β±1,290, 6,84Β±2,341, 6,06Β±2,287 h; Cl β 32,19Β±6,919, 32,29Β±8,357, 31,55Β±10,113 l/h, respectively. Dose proportionality (linear PK) for parameters Cmax, AUC0-t and AUC0-β was established. Dose-dependent reduction of ADP-induced platelet aggregation degree and area under curve was revealed at period of 15 min to 2-4 h after Angipur infusion in doses 0,05 and 0,09 mg/kg. Conclusion. Results of phase I clinical trial demonstrated good tolerability of single intravenous infusions of Angipur (0,015, 0,05 ΠΈ 0,09 mg/kg) in healthy subjects. We determined key PK parameters and indicated dose-dependent antiplatelet activity of Angipur. Β© 2022 Vserossiiskoe Obshchestvo Kardiologov. All rights reserved
Age peculiarities of pharmacotherapy with amoxicillin preparations in children with cystic fibrosis
Amoxicillin and amoxicillin/clavulanate are the medicines of choice for the treatment of infections caused by Staphylococcus aureus and Haemophilus influenzae in children with cystic fibrosis (CF) n the Russian Federation. However, pharmacokinetics (PK) of amoxicillin for CF in childhood was never studied. Objective of the research: To study the pharmacokinetic parameters of amoxicillin in different age periods in children with CF. Materials and methods: 19 patients with CF aged from 2 to 16 years took part in the study. After taking the medicine in mean dose of 31,25 mg/kg (from 28 to 34,5 mg/kg), blood was taken every 1,5 hours after a single dose for 7,5 hours. Pharmacokinetic parameters were assessed using the non-compartmental method in three age subgroups: 2-5 years, 6-11 years, and 12-16 years. Results: High interindividual variability of studied PK parameters was revealed. The lowest values of median AUC0-t, ΞΌg*h/ml and AUC0-t norm (ΞΌg*h/ml)/(mg/kg) (11,34 and 0,4, respectively) were in the subgroup of children aged 2-5 years. The highest values of median AUC0-t, ΞΌg*h/ml and AUC0-t norm (ΞΌg*h/ml)/(mg/kg) (18,45 and 0,64, respectively) were in the subgroup of 12-16 years old adolescents with CF. Values of Cmax (ΞΌg/ml) and Cmax norm (ΞΌg/ml)/(mg/kg) in the younger age group median were 2,79 ΞΌg/ml and 0,1 (ΞΌg/ml)/(mg/kg), in adolescent subgroup-5,47 ΞΌg/ml and 0,16 (ΞΌg/ml)/(mg/kg), respectively. Median time to reach maximum amoxicillin concentration in blood plasma in the subgroup of children aged 2-5 years with CF was 1,5 hours (1,5-3 hours); in subgroups of 6-11 years and 12-16 years, the median was estimated as 3 hours. Conclusion: Considering the results obtained, it can be assumed that, on average, the total clearance of amoxicillin decreases with age. Further studies of PC/pharmacodynamics are needed to develop adequate dosing regimens of amoxicillin for CF, especially in the group of children under 5 years of age. Β© 2019, Pediatria Ltd.. All rights reserved