5,624 research outputs found

    Infrared scintillation yield in gaseous and liquid argon

    Full text link
    The study of primary and secondary scintillations in noble gases and liquids is of paramount importance to rare-event experiments using noble gas media. In the present work, the scintillation yield in gaseous and liquid Ar has for the first time been measured in the near infrared (NIR) and visible region, both for primary and secondary (proportional) scintillations, using Geiger-mode avalanche photodiodes (G-APDs) and pulsed X-ray irradiation. The primary scintillation yield of the fast component was measured to be 17000 photon/MeV in gaseous Ar in the NIR, in the range of 690-1000 nm, and 510 photon/MeV in liquid Ar, in the range of 400-1000 nm. Proportional NIR scintillations (electroluminescence) in gaseous Ar have been also observed; their amplification parameter at 163 K was measured to be 13 photons per drifting electron per kV. Possible applications of NIR scintillations in high energy physics experiments are discussed.Comment: 6 pages, 5 figures. Submitted to Europhysics Letter. Revised Figs. 3 and

    Development Of Technological Sour-milk Desserts Enriched With Bifidobacteria

    Full text link
    The work is devoted to the development of the technology of fermented sour-milk desserts, enriched with bifidobacteria and biologically active and physiologically valuable substances of fruit-berry raw materials. Bifidobacteria regulate the quality and quantity composition of the normal intestinal microfllora that is an important factor of organism protection from different intestinal infections. The healthy effect is mainly conditioned by biologically valuable properties of specially selected consortiums of lacto- and bifidobacteria, more stable for the effect of inhibitors and unfavorable environmental conditions.At the joint use of selected consortiums of strains of bifido- and lactobacteria, the number of viable cells of bifidobacteria increases in 3-4 times, the antagonistic activity increases comparing with using separate strains of microorganisms.The use of fructose and lactulose as a biostimulating component of sour-milk desserts raises the activity, growth and development of bifidobacteria. For stabilizing the structure of sour-milk clots, there were used hydrocalloids, such as pectin and starch that favors the increase of the number of viable cells of bifidobacteria, provides the necessary viscosity and certain humidity, prevents stratification at using fruit-berry prebiotics. The optimal storage term of sour-milk desserts at temperature (3±1) оС is no more than 15 days

    GEM operation in helium and neon at low temperatures

    Full text link
    We study the performance of Gas Electron Multipliers (GEMs) in gaseous He, Ne and Ne+H2 at temperatures in the range of 2.6-293 K. In He, at temperatures between 62 and 293 K, the triple-GEM structures often operate at rather high gains, exceeding 1000. There is an indication that this high gain is achieved by Penning effect in the gas impurities released by outgassing. At lower temperatures the gain-voltage characteristics are significantly modified probably due to the freeze-out of impurities. In particular, the double-GEM and single-GEM structures can operate down to 2.6 K at gains reaching only several tens at a gas density of about 0.5 g/l; at higher densities the maximum gain drops further. In Ne, the maximum gain also drops at cryogenic temperatures. The gain drop in Ne at low temperatures can be reestablished in Penning mixtures of Ne+H2: very high gains, exceeding 10000, have been obtained in these mixtures at 50-60 K, at a density of 9.2 g/l corresponding to that of saturated Ne vapor near 27 K. The results obtained are relevant in the fields of two-phase He and Ne detectors for solar neutrino detection and electron avalanching at low temperatures.Comment: 13 pages, 14 figures. Accepted for publishing in Nucl. Instr. and Meth.

    Leading twist contribution to color singlet χc0,2ωω\chi_{c0,2}\to\omega\omega decays

    Full text link
    In this paper the leading twist contribution to χc0,2ωω\chi_{c0,2}\to\omega\omega decays in the color singlet approximation is considered. It is shown, that the predictions for \Br(\chi_0\to\omega\omega) is in a good agreement with the experimental data, while \Br(\chi_{c2}\to\omega\omega) differs from the experiment significantly.Comment: 4 pages, RevTeX; minor changes, some refrences adde

    Non-sequential double ionization below laser-intensity threshold: Anticorrelation of electrons without excitation of parent ion

    Full text link
    Two-electron correlated spectra of non-sequential double ionization below laser-intensity threshold are known to exhibit back-to-back scattering of the electrons, viz., the anticorrelation of the electrons. Currently, the widely accepted interpretation of the anticorrelation is recollision-induced excitation of the ion plus subsequent field ionization of the second electron. We argue that another mechanism, namely simultaneous electron emission, when the time of return of the rescattered electron is equal to the time of liberation of the bounded electron (the ion has no time for excitation), can also explain the anticorrelation of the electrons in the deep below laser-intensity threshold regime. Our conclusion is based on the results of the numerical solution of the time-dependent Schr\"{o}dinger equation for a model system of two one-dimensional electrons as well as an adiabatic analytic model that allows for a closed-form solution.Comment: 6 pages and 3 figure
    corecore