856 research outputs found

    Asymptotic safety with Majorana fermions and new large N equivalences

    Get PDF
    Using Majorana fermions and elementary mesons we find new massless quantum field theories with weakly interacting ultraviolet fixed points. We also find new classes of large N equivalences among SU, SO, and Sp gauge theories with different types of matter fields and Yukawa interactions. Results include a triality of asymptotically safe theories and dualities between asymptotically free matter-gauge theories with identical fixed points, phase diagrams, and scaling exponents. Implications for conformal field theory and orbifold reductions are indicated

    A survey of thermal expansion coefficients for organic molecular crystals in the Cambridge Structural Database.

    Get PDF
    Typical ranges of thermal expansion coefficients are established for organic molecular crystals in the Cambridge Structural Database. The CSD Python API is used to extract 6201 crystal structures determined close to room temperature and at least one lower temperature down to 90 K. The data set is dominated by structure families with only two temperature points and is subject to various sources of error, including incorrect temperature reporting and missing flags for variable-pressure studies. For structure families comprising four or more temperature points in the range 90-300 K, a linear relationship between unit-cell volume and temperature is shown to be a reasonable approximation. For a selected subset of 210 structures showing an optimal linear fit, the volumetric expansion coefficient at 298 K has mean 173 p.p.m. K-1 and standard deviation 47 p.p.m.  K-1. The full set of 6201 structures shows a similar distribution, which is fitted by a normal distribution with mean 161 p.p.m. K-1 and standard deviation 51 p.p.m. K-1, with excess population in the tails mainly comprising unreliable entries. The distribution of principal expansion coefficients, extracted under the assumption of a linear relationship between length and temperature, shows a positive skew and can be approximated by two half normal distributions centred on 33 p.p.m. K-1 with standard deviations 40 p.p.m. K-1 (lower side) and 56 p.p.m. K-1 (upper side). The distribution for the full structure set is comparable to that of the test subset, and the overall frequency of biaxial and uniaxial negative thermal expansion is estimated to be < 5% and ∼30%, respectively. A measure of the expansion anisotropy shows a positively skewed distribution, similar to the principal expansion coefficients themselves, and ranges based on suggested half normal distributions are shown to highlight literature cases of exceptional thermal expansion

    Redetermination of 3-methyl­isoquinoline at 150 K

    Get PDF
    The structure of the title compound, C19H9O, has been redetermined at 150 K. The redetermination is of significantly higher precision than a previous room-temperature structure [Ribar et al. (1974 ▶). Cryst. Struct. Commun. 3, 323–325]. The C—N bond lengths for this redetermination are much closer to those observed in comparable structures, and the orientation of the methyl group with respect to the isoquinoline plane is clarified. Inter­molecular weak C—H⋯N contacts are present in the crystal

    Price of asymptotic safety

    Get PDF
    All known examples of four dimensional quantum field theories with asymptotic freedom or asymptotic safety at weak coupling involve non-abelian gauge interactions. We demonstrate that this is not a coincidence: no weakly coupled fixed points, ultraviolet or otherwise, can be reliably generated in theories lacking gauge interactions. Implications for particle physics, critical phenomena, and conformal field theory, are indicated

    Intermolecular interactions and disorder in six isostructural celecoxib solvates.

    Get PDF
    Six isostructural crystalline solvates of the active pharmaceutical ingredient celecoxib {4-[5-(4-methylphenyl)-3-(trifluoromethyl)pyrazol-1-yl]benzenesulfonamide; C17H14F3N3O2S} are described, containing dimethylformamide (DMF, C3H7NO, 1), dimethylacetamide (DMA, C4H9NO, 2), N-methylpyrrolidin-2-one (NMP, C5H9NO, 3), tetramethylurea (TMU, C5H12N2O, 4), 1,3-dimethyl-3,4,5,6-tetrahydropyrimidin-2(1H)-one (DMPU, C6H12N2O, 5) or dimethyl sulfoxide (DMSO, C2H6OS, 6). The host celecoxib structure contains one-dimensional channel voids accommodating the solvent molecules, which accept hydrogen bonds from the NH2 groups of two celecoxib molecules. The solvent binding sites have local twofold rotation symmetry, which is consistent with the point symmetry of the solvent molecule in 4 and 5, but introduces orientational disorder for the solvent molecules in 1, 2, 3 and 6. Despite the isostructurality of 1-6, the unit-cell volume and solvent-accessible void space show significant variation. In particular, 4 and 5 show an enlarged and skewed unit cell, which can be attributed to a specific interaction between an N-CH3 group in the solvent molecule and the toluene group of celecoxib. Intermolecular interaction energies calculated using the PIXEL method show that the total interaction energy between the celecoxib and solvent molecules is broadly correlated with the molecular volume of the solvent, except in 6, where the increased polarity of the S=O bond leads to greater overall stabilization compared to the similarly-sized DMF molecule in 1. In the structures showing disorder, the most stable orientations of the solvent molecules make C-H...O contacts to the S=O groups of celecoxib

    2,6-Bis(2,4-dimethyl­benzyl­idene)cyclo­hexa­none

    Get PDF
    In the crystal structure of the title compound, C24H6O, the mol­ecule exhibits point symmetry m but the mirror plane is not utilized as part of the space-group symmetry. The structure contains face-to-face inter­actions between the 2,4-dimethyl­benzyl­idene substituents in which the methyl groups lie directly above the centroids of adjacent benzene rings

    5,6-Dioxo-1,10-phenanthrolin-1-ium chloride

    Get PDF
    The title compound, C12H7N2O2 +·Cl−, is isostructural with its bromide analogue. The compound exhibits a layered structure in which all atoms lie on a crystallographic mirror plane. N+—H⋯Cl− hydrogen bonds, C—H⋯O and C—H⋯Cl− contacts are formed within each layer. The perpendicular separation between the layers is 3.141 (1) Å
    corecore