103 research outputs found

    A new probe for measuring electrolytic conductance

    Get PDF
    A conductance cell of which the electrodes are provided with a 110 nm thick Ta2O5 insulating film is proposed and realized. The stable and very low impedance of the total oxide/solution interface largely reduces interference from redox processes. Measurement results, given as an output voltage between 10 and 600 mV as a function of the specific resistance between 0.1 and 8 k¿, are shown to be in agreement with theoretically calculated results, both at the constant current and constant voltage mode of operation

    Chemically modified field effect transistors: the effect of ion-pair association on the membrane potentials

    Get PDF
    A theoretical model has been developed which relates physically accessible parameters to the formation of a membrane potential. The description is an extension of a theoretical description presented previously by our group, now including divalent cations and ion-pair association. Simulations of the overall membrane potential reveal several factors that may lead to non-Nernstian response curves. For monovalent and divalent cations a reduction in the slope of the response curve (sub-Nernstian response) should virtually always be expected when ion-pair association takes place in the membrane. Ion-pair association of divalent cations and sample anions can lead to a super-Nernstian response. A diffusion potential generally reduces the Nernstian slope of the response curve. In addition, several experimental results are described which illustrate and confirm our theoretical model

    Iridium oxide as actuator material for the ISFET-based sensor-actuator system

    Get PDF
    Acid or base concentrations can be determined by performing an acid-base titration with Coulometrically generated OH- or H+ ions at a noble-metal actuator electrode in close proximity to the pH-sensitive gate of an ISFET. The ISFET is used as the indicator electrode to detect the equivalence point in the titration curve. The potential of the actuator electrode during the generation of the titrant is relatively high for the anodic water electrolysis (or relatively low for the cathodic reaction). Consequently other redox couples which are possibly present in the sample solution can interfere with the water electrolysis. This reduces the efficiency of the current to titrant generation on which this measurement relies. To overcome this problem, iridium oxide has been used as a new electroactive material for the actuator electrode. The reversible redox reaction in this metal oxide occurs at a favourable potential and is attended by the exclusive uptake or release of protons, making a titration possible. It is shown that a Coulometric titration in the presence of Cl¿ ions, formerly not possible with the noble-metal actuator electrode because of the redox interference, can now successfully be carried out with iridium oxide as the actuator material. Calculations show that the ISFET pH-sensor is well suited to determining accurately the equivalence point in the steep part of the titration curve, because of its short response time

    Osmosis and pervaporation in polyimide submicron microfluidic channel structures

    Get PDF
    Osmosis and pervaporation of water through the roof of all-polyimide channels of 500 nm height is described. The phenomena cause both a liquid flow in the channels and a concentration change of dissolved salt. Both effects are amplified due to the thin channel roof and the small channel height. Osmotic movement of demineralized water was observed towards a salt solution and towards ethanol and isopropanol. Water movement by pervaporation was observed from a salt solution towards the atmosphere. Flow velocities of up to 70 �?��m/s were generated in the channels. The results are in accordance with predictions from the solution-diffusion model for membrane transport. The observed phenomena can be applied in a nanofluidic osmotic pump or for an osmotic or pervaporative concentrator

    Large scale patterning of hydrogel microarrays using capillary pinning

    Get PDF
    Capillary barriers provide a simple and elegant means for autonomous fluid-flow control in microfluidic systems. In this work, we report on the fabrication of periodic hydrogel microarrays in closed microfluidic systems using non-fluorescent capillary barriers. This design strategy enables the fabrication of picoliter-volume patterns of photopolymerized and thermo-gelling hydrogels without any defects and distortions

    Laser Controlled Manipulation of Microbubbles on a Surface with Silica-Coated Gold Nanoparticle Array

    Get PDF
    Microbubble generation and manipulation play critical roles in diverse applications such as microfluidic mixing, pumping, and microrobot propulsion. However, existing methods are typically limited to lateral movements on customized substrates or rely on specific liquids with particular properties or designed concentration gradients, thereby hindering their practical applications. To address this challenge, this paper presents a method that enables robust vertical manipulation of microbubbles. By focusing a resonant laser on hydrophilic silica-coated gold nanoparticle arrays immersed in water, plasmonic microbubbles are generated and detach from the substrates immediately upon cessation of laser irradiation. Using simple laser pulse control, it can achieve an adjustable size and frequency of bubble bouncing, which is governed by the movement of the three-phase contact line during surface wetting. Furthermore, it demonstrates that rising bubbles can be pulled back by laser irradiation induced thermal Marangoni flow, which is verified by particle image velocimetry measurements and numerical simulations. This study provides novel insights into flexible bubble manipulation and integration in microfluidics, with significant implications for various applications including mixing, drug delivery, and the development of soft actuators.</p

    Integrated microfluidic biosensing platform for simultaneous confocal microscopy and electrophysiological measurements on bilayer lipid membranes and ion channels

    Get PDF
    Combining high-resolution imaging and electrophysiological recordings is key for various types of experimentation on lipid bilayers and ion channels. Here, we propose an integrated biosensing platform consisting of a microfluidic cartridge and a dedicated chip-holder to conduct such dual measurements on suspended lipid bilayers, in a user-friendly manner. To illustrate the potential of the integrated platform, we characterize lipid bilayers in terms of thickness and fluidity while simultaneously monitoring single ion channel currents. For that purpose, POPC lipid bilayers are supplemented with a fluorescently-tagged phospholipid (NBD-PE, 1% mol) for Fluorescence Recovery After Photobleaching (FRAP) measurements and a model ion channel (gramicidin, 1 nM). These combined measurements reveal that NBD-PE has no effect on the lipid bilayer thickness while gramicidin induces thinning of the membrane. Furthermore, the presence of gramicidin does not alter the lipid bilayer fluidity. Surprisingly, in lipid bilayers supplemented with both probes, a reduction in gramicidin open probability and lifetime is observed compared to lipid bilayers with gramicidin only, suggesting an influence of NBD-PE on the gramicidin ion function. Altogether, our proposed microfluidic biosensing platform in combination with the herein presented multi-parametric measurement scheme paves the way to explore the interdependent relationship between lipid bilayer properties and ion channel function

    Modular ATR FT-IR microreactor chip for optimizing reaction conditions

    Get PDF
    A silicon chip for attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy in combination with a modular PDMS herringbone mixer and a microreactor has been successfully fabricated and tested. The modular design allows the chip to be used for a variety of reactions. A model synthesis of 1-butyl-2,5-dimethyl-1H-pyrrole from hexane-2,5-dione with 1-butylamine has been performed on chip. When plotting the natural logarithm of the peak area corresponding to the ketone stretch vibration at 1710cm-1, against the residence time, a linear curve can be fitted, suggesting this step to be a first order reaction

    Modular ATR FT-IR microreactor chip for optimizing reaction conditions

    Get PDF
    A silicon chip for attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy in combination with a modular PDMS herringbone mixer and a microreactor has been successfully fabricated and tested. The modular design allows the chip to be used for a variety of reactions. A model synthesis of 1-butyl-2,5-dimethyl-1H-pyrrole from hexane-2,5-dione with 1-butylamine has been performed on chip. When plotting the natural logarithm of the peak area corresponding to the ketone stretch vibration at 1710cm-1, against the residence time, a linear curve can be fitted, suggesting this step to be a first order reaction

    Fluorescent-Probe Characterization for Pore-Space Mapping with Single-Particle Tracking

    Get PDF
    Porous solids often contain complex pore networks with pores of various sizes. Tracking individual fluorescent probes as they diffuse through porous materials can be used to characterize pore networks at tens of nanometers resolution. However, understanding the motion behavior of fluorescent probes in confinement is crucial to reliably derive pore network properties. Here, we introduce well-defined lithography-made model pores developed to study probe behavior in confinement. We investigated the influence of probe-host interactions on diffusion and trapping of confined single-emitter quantum-dot probes. Using the pH-responsiveness of the probes, we were able to largely suppress trapping at the pore walls. This enabled us to define experimental conditions for mapping of the accessible pore space of a one-dimensional pore array as well as a real-life polymerization-catalyst-support particle
    • …
    corecore