829 research outputs found

    Study of time lags in HETE-2 Gamma-Ray Bursts with redshift: search for astrophysical effects and Quantum Gravity signature

    Full text link
    The study of time lags between spikes in Gamma-Ray Bursts light curves in different energy bands as a function of redshift may lead to the detection of effects due to Quantum Gravity. We present an analysis of 15 Gamma-Ray Bursts with measured redshift, detected by the HETE-2 mission between 2001 and 2006 in order to measure time lags related to astrophysical effects and search for Quantum Gravity signature in the framework of an extra-dimension string model. The use of photon-tagged data allows us to consider various energy ranges. Systematic effects due to selection and cuts are evaluated. No significant Quantum Gravity effect is detected from the study of the maxima of the light curves and a lower limit at 95% Confidence Level on the Quantum Gravity scale parameter of 3.2x10**15 GeV is set.Comment: 4 pages, 5 figures. v3: Error corrected in Eq. 1. Results updated. Proceedings of the 30th ICRC, Merida, Mexico (2007

    Constraints on Lorentz Invariance Violation from Fermi-Large Area Telescope Observations of Gamma-Ray Bursts

    Get PDF
    We analyze the MeV/GeV emission from four bright Gamma-Ray Bursts (GRBs) observed by the Fermi-Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light in vacuo on the photon energy (vacuum dispersion), a form of Lorentz invariance violation (LIV) allowed by some Quantum Gravity (QG) theories. First, we use three different and complementary techniques to constrain the total degree of dispersion observed in the data. Additionally, using a maximally conservative set of assumptions on possible source-intrinsic spectral-evolution effects, we constrain any vacuum dispersion solely attributed to LIV. We then derive limits on the "QG energy scale" (the energy scale that LIV-inducing QG effects become important, E_QG) and the coefficients of the Standard Model Extension. For the subluminal case (where high energy photons propagate more slowly than lower energy photons) and without taking into account any source-intrinsic dispersion, our most stringent limits (at 95% CL) are obtained from GRB090510 and are E_{QG,1}>7.6 times the Planck energy (E_Pl) and E_{QG,2}>1.3 x 10^11 GeV for linear and quadratic leading order LIV-induced vacuum dispersion, respectively. These limits improve the latest constraints by Fermi and H.E.S.S. by a factor of ~2. Our results disfavor any class of models requiring E_{QG,1} \lesssim E_Pl.Comment: Accepted for publication by Physical Review

    The effect of rotation and tidal heating on the thermal lightcurves of Super Mercuries

    Full text link
    Short period (<50 days) low-mass (<10Mearth) exoplanets are abundant and the few of them whose radius and mass have been measured already reveal a diversity in composition. Some of these exoplanets are found on eccentric orbits and are subjected to strong tides affecting their rotation and resulting in significant tidal heating. Within this population, some planets are likely to be depleted in volatiles and have no atmosphere. We model the thermal emission of these "Super Mercuries" to study the signatures of rotation and tidal dissipation on their infrared light curve. We compute the time-dependent temperature map at the surface and in the subsurface of the planet and the resulting disk-integrated emission spectrum received by a distant observer for any observation geometry. We calculate the illumination of the planetary surface for any Keplerian orbit and rotation. We include the internal tidal heat flow, vertical heat diffusion in the subsurface and generate synthetic light curves. We show that the different rotation periods predicted by tidal models (spin-orbit resonances, pseudo-synchronization) produce different photometric signatures, which are observable provided that the thermal inertia of the surface is high, like that of solid or melted rocks (but not regolith). Tidal dissipation can also directly affect the light curves and make the inference of the rotation more difficult or easier depending on the existence of hot spots on the surface. Infrared light curve measurement with the James Webb Space Telescope and EChO can be used to infer exoplanets' rotation periods and dissipation rates and thus to test tidal models. This data will also constrain the nature of the (sub)surface by constraining the thermal inertia.Comment: 15 pages, 13 figures, accepted for publication in Astronomy & Astrophysic

    Reconnaissance of the TRAPPIST-1 exoplanet system in the Lyman-α\alpha line

    Full text link
    The TRAPPIST-1 system offers the opportunity to characterize terrestrial, potentially habitable planets orbiting a nearby ultracool dwarf star. We performed a four-orbit reconnaissance with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope to study the stellar emission at Lyman-α\alpha, to assess the presence of hydrogen exospheres around the two inner planets, and to determine their UV irradiation. We detect the Lyman-α\alpha line of TRAPPIST-1, making it the coldest exoplanet host star for which this line has been measured. We reconstruct the intrinsic line profile, showing that it lacks broad wings and is much fainter than expected from the stellar X-ray emission. TRAPPIST-1 has a similar X-ray emission as Proxima Cen but a much lower Ly-α\alpha emission. This suggests that TRAPPIST-1 chromosphere is only moderately active compared to its transition region and corona. We estimated the atmospheric mass loss rates for all planets, and found that despite a moderate extreme UV emission the total XUV irradiation could be strong enough to strip the atmospheres of the inner planets in a few billions years. We detect marginal flux decreases at the times of TRAPPIST-1b and c transits, which might originate from stellar activity, but could also hint at the presence of extended hydrogen exospheres. Understanding the origin of these Lyman-α\alpha variations will be crucial in assessing the atmospheric stability and potential habitability of the TRAPPIST-1 planets.Comment: Published in A&A as a Letter to the Edito

    Lorentz Symmetry breaking studies with photons from astrophysical observations

    Full text link
    Lorentz Invariance Violation (LIV) may be a good observational window on Quantum Gravity physics. Within last few years, all major Gamma-ray experiments have published results from the search for LIV with variable astrophysical sources: gamma-ray bursts with detectors on-board satellites and Active Galactic Nuclei with ground-based experiments. In this paper, the recent time-of-flight studies with unpolarized photons published from the space and ground based observations are reviewed. Various methods used in the time delay searches are described, and their performance discussed. Since no significant time-lag value was found within experimental precision of the measurements, the present results consist of 95% confidence cevel limits on the Quantum Gravity scale on the linear and quadratic terms in the standard photon dispersion relations.Comment: 22 pages, 9 figures. V2 match the published version. Invited review talk to the 2nd International Colloquium "Scientific and Fundamental Aspects of the Galileo Programme", 14-16 october 2009, Padua, Ital

    Lorentz-violation-induced arrival delays of cosmological particles

    Full text link
    We point out that previous studies of possible Lorentz-violating effects in astronomical time-of-flight data did not take into account the entire implications of the universe's cosmological expansion. We present the derivation of the accurate formulation of the problem and show that the resulting correction of the limits on Lorentz violation is significant.Comment: references to additional studies of GRB data adde
    corecore