148 research outputs found
Carbon antisite clusters in SiC: a possible pathway to the D_{II} center
The photoluminescence center D_{II} is a persistent intrinsic defect which is
common in all SiC polytypes. Its fingerprints are the characteristic phonon
replicas in luminescence spectra. We perform ab-initio calculations of
vibrational spectra for various defect complexes and find that carbon antisite
clusters exhibit vibrational modes in the frequency range of the D_{II}
spectrum. The clusters possess very high binding energies which guarantee their
thermal stability--a known feature of the D_{II} center. The di-carbon antisite
(C_{2})_{Si} (two carbon atoms sharing a silicon site) is an important building
block of these clusters.Comment: RevTeX 4, 6 pages, 3 figures Changes in version 2: Section headings,
footnote included in text, vibrational data now given for neutral
split-interstitial, extended discussion of the [(C_2)_Si]_2 defect incl.
figure Changes version 3: Correction of binding energy for 3rd and 4th carbon
atom at antisite; correction of typo
Self-vacancies in Gallium Arsenide: an ab initio calculation
We report here a reexamination of the static properties of vacancies in GaAs
by means of first-principles density-functional calculations using localized
basis sets. Our calculated formation energies yields results that are in good
agreement with recent experimental and {\it ab-initio} calculation and provide
a complete description of the relaxation geometry and energetic for various
charge state of vacancies from both sublattices. Gallium vacancies are stable
in the 0, -, -2, -3 charge state, but V_Ga^-3 remains the dominant charge state
for intrinsic and n-type GaAs, confirming results from positron annihilation.
Interestingly, Arsenic vacancies show two successive negative-U transitions
making only +1, -1 and -3 charge states stable, while the intermediate defects
are metastable. The second transition (-/-3) brings a resonant bond relaxation
for V_As^-3 similar to the one identified for silicon and GaAs divacancies.Comment: 14 page
Structure and vibrational spectra of carbon clusters in SiC
The electronic, structural and vibrational properties of small carbon
interstitial and antisite clusters are investigated by ab initio methods in 3C
and 4H-SiC. The defects possess sizable dissociation energies and may be formed
via condensation of carbon interstitials, e.g. generated in the course of ion
implantation. All considered defect complexes possess localized vibrational
modes (LVM's) well above the SiC bulk phonon spectrum. In particular, the
compact antisite clusters exhibit high-frequency LVM's up to 250meV. The
isotope shifts resulting from a_{13}C enrichment are analyzed. In the light of
these results, the photoluminescence centers D_{II} and P-U are discussed. The
dicarbon antisite is identified as a plausible key ingredient of the
D_{II}-center, whereas the carbon split-interstitial is a likely origin of the
P-T centers. The comparison of the calculated and observed high-frequency modes
suggests that the U-center is also a carbon-antisite based defect.Comment: 15 pages, 6 figures, accepted by Phys. Rev.
Breakdown of cation vacancies into anion vacancy-antisite complexes on III-V semiconductor surfaces
An asymmetric defect complex originating from the cation vacancy on (110) III-V semiconductor surfaces which has significantly lower formation energy than the ideal cation vacancy is presented. The complex is formed by an anion from the top layer moving into the vacancy, leaving an anion antisite–anion vacancy defect complex. By calculating the migration barrier, it is found that any ideal cation vacancies will spontaneously transform to this defect complex at room temperature. For stoichiometric semiconductors the defect formation energy of the complex is close to that of the often-observed anion vacancy, giving thermodynamic equilibrium defect concentrations on the same order. The calculated scanning tunneling microscopy (STM) plot of the defect complex is also shown to be asymmetric in the [11¯0] direction, in contrast to the symmetric one of the anion vacancy. This might therefore explain the two distinct asymmetric and symmetric vacancy structures observed experimentally by STM
The growth exponent for planar loop-erased random walk
We give a new proof of a result of Kenyon that the growth exponent for
loop-erased random walks in two dimensions is 5/4. The proof uses the
convergence of LERW to Schramm-Loewner evolution with parameter 2, and is valid
for irreducible bounded symmetric random walks on any two-dimensional discrete
lattice.Comment: 62 pages, 7 figures; fixed typos, added reference
Isolated oxygen defects in 3C- and 4H-SiC: A theoretical study
Ab initio calculations in the local-density approximation have been carried out in SiC to determine the possible configurations of the isolated oxygen impurity. Equilibrium geometry and occupation levels were calculated. Substitutional oxygen in 3C-SiC is a relatively shallow effective mass like double donor on the carbon site (O-C) and a hyperdeep double donor on the Si site (O-Si). In 4H-SiC O-C is still a double donor but with a more localized electron state. In 3C-SiC O-C is substantially more stable under any condition than O-Si or interstitial oxygen (O-i). In 4H-SiC O-C is also the most stable one except for heavy n-type doping. We propose that O-C is at the core of the electrically active oxygen-related defect family found by deep level transient spectroscopy in 4H-SiC. The consequences of the site preference of oxygen on the SiC/SiO2 interface are discussed
Diffusion of Pt dimers on Pt(111)
We report the results of a density-functional study of the diffusion of Pt
dimers on the (111) surface of Pt. The calculated activation energy of 0.37 eV
is in {\em exact} agreement with the recent experiment of Kyuno {\em et al.}
\protect{[}Surf. Sci. {\bf 397}, 191 (1998)\protect{]}. Our calculations
establish that the dimers are mobile at temperatures of interest for adatom
diffusion, and thus contribute to mass transport. They also indicate that the
diffusion path for dimers consists of a sequence of one-atom and (concerted)
two-atom jumps.Comment: Pour pages postscript formatted, including one figure; submitted to
Physical Review B; other papers of interest can be found at url
http://www.centrcn.umontreal.ca/~lewi
Towards a first-principles theory of surface thermodynamics and kinetics
Understanding of the complex behavior of particles at surfaces requires
detailed knowledge of both macroscopic and microscopic processes that take
place; also certain processes depend critically on temperature and gas
pressure. To link these processes we combine state-of-the-art microscopic, and
macroscopic phenomenological, theories. We apply our theory to the O/Ru(0001)
system and calculate thermal desorption spectra, heat of adsorption, and the
surface phase diagram. The agreement with experiment provides validity for our
approach which thus identifies the way for a predictive simulation of surface
thermodynamics and kinetics.Comment: 4 pages including 3 figures. Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Impact of Electron Solvation on Ice Structures at the Molecular Scale
We determine the impact of electron solvation on DO structures adsorbed on Cu(111) with low temperature scanning tunneling microscopy, two-photon photoemission, and ab initio theory. UV photons generating solvated electrons lead not only to transient, but also to permanent structural changes through the rearrangement of individual molecules. The persistent changes occur near sites with a high density of dangling OH groups that facilitate electron solvation. We conclude that energy dissipation during solvation triggers permanent molecular rearrangement via vibrational excitation
- …