1,451 research outputs found
Gyrotropic impact upon negatively refracting surfaces
Surface wave propagation at the interface between different types of gyrotropic materials and an isotropic negatively refracting medium, in which the relative permittivity and relative permeability are, simultaneously, negative is investigated. A general approach is taken that embraces both gyroelectric and gyromagnetic materials, permitting the possibility of operating in either the low GHz, THz or the optical frequency regimes. The classical transverse Voigt configuration is adopted and a complete analysis of non-reciprocal surface wave dispersion is presented. The impact of the surface polariton modes upon the reflection of both plane waves and beams is discussed in terms of resonances and an example of the influence upon the Goos–Hänchen shift is given
Variability in surface chlorophyll a at a shelf-break front
We report an extensive underway sampling of temperature and chlorophyll a in the region of the shelf/slope front in the New York Bight in early spring. Variability in chlorophyll a and frontal structure is analyzed at three spatial scales…
Observation of surface gap solitons in semi-infinite waveguide arrays
We report on the first observation of surface gap solitons, recently
predicted to exist at the interface between uniform and periodic dielectric
media with defocusing nonlinearity [Ya.V. Kartashov et al., Phys. Rev. Lett.
96, 073901 (2006). We demonstrate strong self-trapping at the edge of a LiNbO_3
waveguide array and the formation of staggered surface solitons with
propagation constant inside the first photonic band gap. We study the crossover
between linear repulsion and nonlinear attraction at the surface, revealing the
mechanism of nonlinearity-mediated stabilization of the surface gap modes.Comment: 4 pages, 5 figure
The homotopy theory of simplicial props
The category of (colored) props is an enhancement of the category of colored
operads, and thus of the category of small categories. In this paper, the
second in a series on "higher props," we show that the category of all small
colored simplicial props admits a cofibrantly generated model category
structure. With this model structure, the forgetful functor from props to
operads is a right Quillen functor.Comment: Final version, to appear in Israel J. Mat
Response theory for time-resolved second-harmonic generation and two-photon photoemission
A unified response theory for the time-resolved nonlinear light generation
and two-photon photoemission (2PPE) from metal surfaces is presented. The
theory allows to describe the dependence of the nonlinear optical response and
the photoelectron yield, respectively, on the time dependence of the exciting
light field. Quantum-mechanical interference effects affect the results
significantly. Contributions to 2PPE due to the optical nonlinearity of the
surface region are derived and shown to be relevant close to a plasmon
resonance. The interplay between pulse shape, relaxation times of excited
electrons, and band structure is analyzed directly in the time domain. While
our theory works for arbitrary pulse shapes, we mainly focus on the case of two
pulses of the same mean frequency. Difficulties in extracting relaxation rates
from pump-probe experiments are discussed, for example due to the effect of
detuning of intermediate states on the interference. The theory also allows to
determine the range of validity of the optical Bloch equations and of
semiclassical rate equations, respectively. Finally, we discuss how collective
plasma excitations affect the nonlinear optical response and 2PPE.Comment: 27 pages, including 11 figures, version as publishe
Green's function surface-integral method for nonlocal response of plasmonic nanowires in arbitrary dielectric environments
We develop a nonlocal-response generalization to the Green-function
surface-integral method (GSIM), also known as the boundary-element method
(BEM). This numerically light method can accurately describe the linear
hydrodynamic nonlocal response of arbitrarily shaped plasmonic nanowires in
arbitrary dielectric backgrounds. All previous general-purpose methods for
nonlocal response are bulk methods. We also expand the possible geometries to
which the usual local-response GSIM can be applied, by showing how to
regularize singularities that occur in the surface integrals when the
nanoparticles touch a dielectric substrate. The same regularization works for
nonlocal response. Furthermore, an effective theory is developed to explain the
numerically observed nonlocal effects. The nonlocal frequency blueshift of a
cylindrical nanowire in an inhomogeneous background generally increases as the
nanowire radius and the longitudinal wavenumber become smaller, or when the
effective background permittivity or the mode inhomogeneity increase. The
inhomogeneity can be expressed in terms of an effective angular momentum of the
surface-plasmon mode. We compare local and nonlocal response of free-standing
nanowires, and of nanowires close to and on top of planar dielectric
substrates. Especially for the latter geometry, considerable differences in
extinction cross sections are found for local as compared to nonlocal response,
similar to what is found for plasmonic dimer structures.Comment: 20 pages, 9 figure
The Spectral Image Processing System (SIPS): Software for integrated analysis of AVIRIS data
The Spectral Image Processing System (SIPS) is a software package developed by the Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, in response to a perceived need to provide integrated tools for analysis of imaging spectrometer data both spectrally and spatially. SIPS was specifically designed to deal with data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the High Resolution Imaging Spectrometer (HIRIS), but was tested with other datasets including the Geophysical and Environmental Research Imaging Spectrometer (GERIS), GEOSCAN images, and Landsat TM. SIPS was developed using the 'Interactive Data Language' (IDL). It takes advantage of high speed disk access and fast processors running under the UNIX operating system to provide rapid analysis of entire imaging spectrometer datasets. SIPS allows analysis of single or multiple imaging spectrometer data segments at full spatial and spectral resolution. It also allows visualization and interactive analysis of image cubes derived from quantitative analysis procedures such as absorption band characterization and spectral unmixing. SIPS consists of three modules: SIPS Utilities, SIPS_View, and SIPS Analysis. SIPS version 1.1 is described below
- …