1,099 research outputs found

    Extreme 13C depletion of CCl2F2 in firn air samples from NEEM, Greenland

    Get PDF
    A series of 12 high volume air samples collected from the S2 firn core during the North Greenland Eemian Ice Drilling (NEEM) 2009 campaign have been measured for mixing ratio and stable carbon isotope composition of the chlorofluorocarbon CFC-12 (CCl2F2). While the mixing ratio measurements compare favorably to other firn air studies, the isotope results show extreme 13C depletion at the deepest measurable depth (65 m), to values lower than d13C = -80‰ vs. VPDB (the international stable carbon isotope scale), compared to present day surface tropospheric measurements near -40‰. Firn air modeling was used to interpret these measurements. Reconstructed atmospheric time series indicate even larger depletions (to -120‰) near 1950 AD, with subsequent rapid enrichment of the atmospheric reservoir of the compound to the present day value. Mass-balance calculations show that this change is likely to have been caused by a large change in the isotopic composition of anthropogenic CFC-12 emissions, probably due to technological advances in the CFC production process over the last 80 yr, though direct evidence is lacking

    A new multi-gas constrained model of trace gas non-homogeneous transport in firn: evaluation and behaviour at eleven polar sites

    Get PDF
    Insoluble trace gases are trapped in polar ice at the firn-ice transition, at approximately 50 to 100 m below the surface, depending primarily on the site temperature and snow accumulation. Models of trace gas transport in polar firn are used to relate firn air and ice core records of trace gases to their atmospheric history. We propose a new model based on the following contributions. First, the firn air transport model is revised in a poromechanics framework with emphasis on the non-homogeneous properties and the treatment of gravitational settling. We then derive a nonlinear least square multi-gas optimisation scheme to calculate the effective firn diffusivity (automatic diffusivity tuning). The improvements gained by the multi-gas approach are investigated (up to ten gases for a single site are included in the optimisation process). We apply the model to four Arctic (Devon Island, NEEM, North GRIP, Summit) and seven Antarctic (DE08, Berkner Island, Siple Dome, Dronning Maud Land, South Pole, Dome C, Vostok) sites and calculate their respective depth-dependent diffusivity profiles. Among these different sites, a relationship is inferred between the snow accumulation rate and an increasing thickness of the lock-in zone defined from the isotopic composition of molecular nitrogen in firn air (denoted d15N). It is associated with a reduced diffusivity value and an increased ratio of advective to diffusive flux in deep firn, which is particularly important at high accumulation rate sites. This has implications for the understanding of d15N of N2 records in ice cores, in relation with past variations of the snow accumulation rate. As the snow accumulation rate is clearly a primary control on the thickness of the lock-in zone, our new approach that allows for the estimation of the lock-in zone width as a function of accumulation may lead to a better constraint on the age difference between the ice and entrapped gases

    Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica

    Get PDF
    A high-resolution ice-core record of atmospheric CO2 concentration over the Holocene epoch shows that the global carbon cycle has not been in steady state during the past 11,000 years. Analysis of the CO2 concentration and carbon stable-isotope records, using a one-dimensional carbon-cycle model,uggests that changes in terrestrial biomass and sea surface temperature were largely responsible for the observed millennial-scale changes of atmospheric CO2 concentrations

    Chlorine isotope composition in chlorofluorocarbons CFC-11, CFC-12 and CFC-113 in firn, stratospheric and tropospheric air

    Get PDF
    The stratospheric degradation of chlorofluorocarbons (CFCs) releases chlorine, which is a major contributor to the destruction of stratospheric ozone (O3). A recent study reported strong chlorine isotope fractionation during the breakdown of the most abundant CFC (CFC-12, CCl2F2, Laube et al., 2010a), similar to effects seen in nitrous oxide (N2O). Using air archives to obtain a long-term record of chlorine isotope ratios in CFCs could help to identify and quantify their sources and sinks. We analyse the three most abundant CFCs and show that CFC-11 (CCl3F) and CFC-113 (CClF2CCl2F) exhibit significant stratospheric chlorine isotope fractionation, in common with CFC-12. The apparent isotope fractionation (εapp) for mid- and high-latitude stratospheric samples are (-2.4±0.5) ‰ and (-2.3±0.4) ‰ for CFC-11, (-12.2±1.6) ‰ and (-6.8±0.8) ‰ for CFC-12 and (-3.5±1.5) ‰ and (-3.3±1.2) ‰ for CFC-113, respectively. Assuming a constant isotope composition of emissions, we calculate the expected trends in the tropospheric isotope signature of these gases based on their stratospheric 37Cl enrichment and stratosphere-troposphere exchange. We compare these projections to the long-term δ(37Cl) trends of all three CFCs, measured on background tropospheric samples from the Cape Grim air archive (Tasmania, 1978 – 2010) and tropospheric firn air samples from Greenland (NEEM site) and Antarctica (Fletcher Promontory site). From 1970 to the present-day, projected trends agree with tropospheric measurements, suggesting that within analytical uncertainties a constant average emission isotope delta is a compatible scenario. The measurement uncertainty is too high to determine whether the average emission isotope delta has been affected by changes in CFC manufacturing processes, or not. Our study increases the suite of trace gases amenable to direct isotope ratio measurements in small air volumes (approximately 200 ml), using a single-detector gas chromatography-mass spectrometry system

    Atmospheric methane, record from greenland ice core over the last 1000 years

    Get PDF
    The atmospheric methane concentration in ancient times can be reconstructed by analysing air entrapped in bubbles of polar ice sheets. We present results from an ice core from Central Greenland (Eurocore) covering the last 1000 years. We observe variations of about 70 ppbv around the mean pre-industrial level, which is confirmed at about 700 ppbv on a global average. According to our data, the beginning of the anthropogenic methane increase can be set between 1750 and 1800. Changes in the oxidizing capacity of the atmosphere may contribute significantly to the pre-industrial methane concentration variations, but changes in methane emissions probably play a dominant role. Since methane release depends on a host of influences it is difficult to specify clearly the reasons for these emission changes. Methane concentrations correlate only partially with proxy-data of climatic factors which influence the wetland release (the main source in pre-industrial times). A good correlation between our data and a population record from China suggests that man may already have influenced the CH4-cycle significantly before industrialisation

    Accelerating growth of HFC-227ea (1,1,1,2,3,3,3-heptafluoropropane) in the atmosphere

    Get PDF
    We report the first measurements of 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea), a substitute for ozone depleting compounds, in air samples originating from remote regions of the atmosphere and present evidence for its accelerating growth. Observed mixing ratios ranged from below 0.01 ppt in deep firn air to 0.59 ppt in the current northern mid-latitudinal upper troposphere. Firn air samples collected in Greenland were used to reconstruct a history of atmospheric abundance. Year-on-year increases were deduced, with acceleration in the growth rate from 0.029 ppt per year in 2000 to 0.056 ppt per year in 2007. Upper tropospheric air samples provide evidence for a continuing growth until late 2009. Furthermore we calculated a stratospheric lifetime of 370 years from measurements of air samples collected on board high altitude aircraft and balloons. Emission estimates were determined from the reconstructed atmospheric trend and suggest that current "bottom-up" estimates of global emissions for 2005 are too high by a factor of three

    Changes in the Isotopic Signature of Atmospheric Nitrous Oxide and Its Global Average Source During the Last Three Millennia

    Get PDF
    Nitrous oxide (N2O) is a strong greenhouse gas whose mole fraction in the atmosphere has increased over the industrial period. We present a new set of isotope measurements of N2O in air extracted from ice cores covering the last 3,000 years. For the preindustrial (PI) atmosphere, we find an average N2O mole fraction of (267 ± 1) nmol/mol and average tropospheric N2O isotopic values of δ15Nav PI = (9.5 ± 0.1)‰, δ18OPI = (47.1 ± 0.2)‰, δ15Nα PI = (17.8 ± 0.4)‰, and δ15Νβ PI = (1.2 ± 0.4)‰. From PI to modern times all isotope signatures decreased with a total change of δ15Nav = (−2.7 ± 0.2)‰, δ18O = (−2.5 ± 0.4)‰, δ15Nα = (−2.0 ± 0.7)‰, and δ15Νβ (−3.5 ± 0.7)‰. Interestingly, the temporal evolution is not the same for δ15Nav and δ18O. δ18O trends are relatively larger during the early part, and δ15Nav trends are larger during the late part of the industrial period, implying a decoupling of sources over the industrial period. Using a mass balance model, we determined the isotopic composition of the total average N2O source. Assuming that the total present source is the sum of a constant natural source and an increasing anthropogenic source, this anthropogenic source has an isotopic signature of δ15Nav source,anthrop = (−15.0 ± 2.6)‰, δ18Osource,anthrop = (30.0 ± 2.6)‰, δ15Nα source,anthrop = (−4.5 ± 1.7)‰, and δ15Nβ source,anthrop = (−24.0 ± 8.4)‰. The 15N site preference of the source has increased since PI times, which is indicative of a relative shift from denitrification to nitrification sources, consistent with agricultural emissions playing a major role in the N2O increase.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Quantifying molecular oxygen isotope variations during a Heinrich stadial

    Get PDF
    International audienceδ 18 O of atmospheric oxygen (δ 18 O atm) undergoes millennial-scale variations during the last glacial period, and systematically increases during Heinrich stadials (HSs). Changes in δ 18 O atm combine variations in biospheric and water cycle processes. The identification of the main driver of the millennial variability in δ 18 O atm is thus not straightforward. Here, we quantify the response of δ 18 O atm to such millennial events using a freshwater hosing simulation performed under glacial boundary conditions. Our global approach takes into account the latest estimates of isotope frac-tionation factor for respiratory and photosynthetic processes and make use of atmospheric water isotope and vegetation changes. Our modeling approach allows to reproduce the main observed features of a HS in terms of climatic conditions , vegetation distribution and δ 18 O of precipitation. We use it to decipher the relative importance of the different processes behind the observed changes in δ 18 O atm. The results highlight the dominant role of hydrology on δ 18 O atm and confirm that δ 18 O atm can be seen as a global integrator of hydrological changes over vegetated areas

    Rapid growth of HFC-227ea (1,1,1,2,3,3,3-Heptafluoropropane) in the atmosphere

    Get PDF
    We report the first measurements of 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea), a substitute for ozone depleting compounds, in remote regions of the atmosphere and present evidence for its rapid growth. Observed mixing ratios ranged from below 0.01 ppt in deep firn air to 0.59 ppt in the northern mid-latitudinal upper troposphere. Firn air samples collected in Greenland were used to reconstruct a history of atmospheric abundance. Year-on-year increases were deduced, with acceleration in the growth rate from 0.026 ppt per year in 2000 to 0.057 ppt per year in 2007. Upper tropospheric air samples provide evidence for a continuing growth until late 2009. Fur- thermore we calculated a stratospheric lifetime of 370 years from measurements of air samples collected on board high altitude aircraft and balloons. Emission estimates were determined from the reconstructed atmospheric trend and suggest that current "bottom-up" estimates of global emissions for 2005 are too high by more than a factor of three
    corecore