715 research outputs found
Differential Privacy and the Fat-Shattering Dimension of Linear Queries
In this paper, we consider the task of answering linear queries under the
constraint of differential privacy. This is a general and well-studied class of
queries that captures other commonly studied classes, including predicate
queries and histogram queries. We show that the accuracy to which a set of
linear queries can be answered is closely related to its fat-shattering
dimension, a property that characterizes the learnability of real-valued
functions in the agnostic-learning setting.Comment: Appears in APPROX 201
Applying spatial reasoning to topographical data with a grounded geographical ontology
Grounding an ontology upon geographical data has been pro-
posed as a method of handling the vagueness in the domain more effectively. In order to do this, we require methods of reasoning about the spatial relations between the regions within the data. This stage can be computationally expensive, as we require information on the location of
points in relation to each other. This paper illustrates how using knowledge about regions allows us to reduce the computation required in an efficient and easy to understand manner. Further, we show how this system can be implemented in co-ordination with segmented data to reason abou
The Computational Complexity of Symbolic Dynamics at the Onset of Chaos
In a variety of studies of dynamical systems, the edge of order and chaos has
been singled out as a region of complexity. It was suggested by Wolfram, on the
basis of qualitative behaviour of cellular automata, that the computational
basis for modelling this region is the Universal Turing Machine. In this paper,
following a suggestion of Crutchfield, we try to show that the Turing machine
model may often be too powerful as a computational model to describe the
boundary of order and chaos. In particular we study the region of the first
accumulation of period doubling in unimodal and bimodal maps of the interval,
from the point of view of language theory. We show that in relation to the
``extended'' Chomsky hierarchy, the relevant computational model in the
unimodal case is the nested stack automaton or the related indexed languages,
while the bimodal case is modeled by the linear bounded automaton or the
related context-sensitive languages.Comment: 1 reference corrected, 1 reference added, minor changes in body of
manuscrip
On the chirality of quark modes
A model for the QCD vacuum based on a domainlike structured background gluon
field with definite duality attributed to the domains has been shown elsewhere
to give confinement of static quarks, a reasonable value for the topological
susceptibility and indications that chiral symmetry is spontaneously broken. In
this paper we study in detail the eigenvalue problem for the Dirac operator in
such a gluon mean field. A study of the local chirality parameter shows that
the lowest nonzero eigenmodes possess a definite mean chirality correlated with
the duality of a given domain. A probability distribution of the local
chirality qualitatively reproduces histograms seen in lattice simulations.Comment: RevTeX4, 5 figures, 14 page
Optimized random phase approximations for arbitrary reference systems: extremum conditions and thermodynamic consistence
The optimized random phase approximation (ORPA) for classical liquids is
re-examined in the framework of the generating functional approach to the
integral equations. We show that the two main variants of the approximation
correspond to the addition of the same correction to two different first order
approximations of the homogeneous liquid free energy. Furthermore, we show that
it is possible to consistently use the ORPA with arbitrary reference systems
described by continuous potentials and that the same approximation is
equivalent to a particular extremum condition for the corresponding generating
functional. Finally, it is possible to enforce the thermodynamic consistence
between the thermal and the virial route to the equation of state by requiring
the global extremum condition on the generating functional.Comment: 8 pages, RevTe
On The Universality Class Of Little String Theories
We propose that Little String Theories in six dimensions are quasilocal
quantum field theories. Such field theories obey a modification of Wightman
axioms which allows Wightman functions (i.e. vacuum expectation values of
products of fundamental fields) to grow exponentially in momentum space.
Wightman functions of quasilocal fields in x-space violate microlocality at
short distances. With additional assumptions about the ultraviolet behavior of
quasilocal fields, one can define approximately local observables associated to
big enough compact regions. The minimum size of such a region can be
interpreted as the minimum distance which observables can probe. We argue that
for Little String Theories this distance is of order {\sqrt N}/M_s.Comment: 25 pages, late
Putting string/string duality to the test
After simultaneous compactification of spacetime and worldvolume on , the
heterotic fivebrane with gauge group behaves like a
heterotic string with gauge group , but with Kac--Moody
levels different from those of the fundamental string. Thus the
string/fivebrane duality conjecture in gets replaced by a string/string
duality conjecture in . Since strings are better understood than
fivebranes, this provides a more reliable laboratory in which to test
the conjecture. According to string/string duality, the Green--Schwarz
factorization of the spacetime anomaly polynomial into means that just as is the -model anomaly polynomial
of the fundamental string worldsheet so should be the
corresponding polynomial of the dual string worldsheet. To test this idea we
perform a classical dual string calculation of and find agreement
with the quantum fundamental string result. This also provides an {\it a
posteriori} justification for assumptions made in a previous paper on
string/fivebrane duality. Finally we speculate on the relevance of
string/string duality to the vacuum degeneracy problem.Comment: Replaced by version to appear in Nucl. Phys.
Signatures of small-world and scale-free properties in large computer programs
A large computer program is typically divided into many hundreds or even
thousands of smaller units, whose logical connections define a network in a
natural way. This network reflects the internal structure of the program, and
defines the ``information flow'' within the program. We show that, (1) due to
its growth in time this network displays a scale-free feature in that the
probability of the number of links at a node obeys a power-law distribution,
and (2) as a result of performance optimization of the program the network has
a small-world structure. We believe that these features are generic for large
computer programs. Our work extends the previous studies on growing networks,
which have mostly been for physical networks, to the domain of computer
software.Comment: 4 pages, 1 figure, to appear in Phys. Rev.
Topology, Entropy and Witten Index of Dilaton Black Holes
We have found that for extreme dilaton black holes an inner boundary must be
introduced in addition to the outer boundary to give an integer value to the
Euler number. The resulting manifolds have (if one identifies imaginary time)
topology and Euler number in contrast to
the non-extreme case with . The entropy of extreme dilaton black
holes is already known to be zero. We include a review of some recent ideas due
to Hawking on the Reissner-Nordstr\"om case. By regarding all extreme black
holes as having an inner boundary, we conclude that the entropy of {\sl all}
extreme black holes, including black holes, vanishes. We discuss the
relevance of this to the vanishing of quantum corrections and the idea that the
functional integral for extreme holes gives a Witten Index. We have studied
also the topology of ``moduli space'' of multi black holes. The quantum
mechanics on black hole moduli spaces is expected to be supersymmetric despite
the fact that they are not HyperK\"ahler since the corresponding geometry has
torsion unlike the BPS monopole case. Finally, we describe the possibility of
extreme black hole fission for states with an energy gap. The energy released,
as a proportion of the initial rest mass, during the decay of an
electro-magnetic black hole is 300 times greater than that released by the
fission of an nucleus.Comment: 51 pages, 4 figures, LaTeX. Considerably extended version. New
sections include discussion of the Witten index, topology of the moduli
space, black hole sigma model, and black hole fission with huge energy
releas
Against all odds? Forming the planet of the HD196885 binary
HD196885Ab is the most "extreme" planet-in-a-binary discovered to date, whose
orbit places it at the limit for orbital stability. The presence of a planet in
such a highly perturbed region poses a clear challenge to planet-formation
scenarios. We investigate this issue by focusing on the planet-formation stage
that is arguably the most sensitive to binary perturbations: the mutual
accretion of kilometre-sized planetesimals. To this effect we numerically
estimate the impact velocities amongst a population of circumprimary
planetesimals. We find that most of the circumprimary disc is strongly hostile
to planetesimal accretion, especially the region around 2.6AU (the planet's
location) where binary perturbations induce planetesimal-shattering of
more than 1km/s. Possible solutions to the paradox of having a planet in such
accretion-hostile regions are 1) that initial planetesimals were very big, at
least 250km, 2) that the binary had an initial orbit at least twice the present
one, and was later compacted due to early stellar encounters, 3) that
planetesimals did not grow by mutual impacts but by sweeping of dust (the
"snowball" growth mode identified by Xie et al., 2010b), or 4) that HD196885Ab
was formed not by core-accretion but by the concurent disc instability
mechanism. All of these 4 scenarios remain however highly conjectural.Comment: accepted for publication by Celestial Mechanics and Dynamical
Astronomy (Special issue on EXOPLANETS
- …