88 research outputs found

    Acetaminophen: Beyond Pain and Fever-Relieving

    Get PDF
    Acetaminophen, also known as APAP or paracetamol, is one of the most widely used analgesics (pain reliever) and antipyretics (fever reducer). According to the U.S. Food and Drug Administration, currently there are 235 approved prescription and over-the-counter drug products containing acetaminophen as an active ingredient. When used as directed, acetaminophen is very safe and effective; however when taken in excess or ingested with alcohol hepatotoxicity and irreversible liver damage can arise. In addition to well known use pain relief and fever reduction, recent laboratory and pre-clinical studies have demonstrated that acetaminophen may also have beneficial effects on blood glucose levels, skeletal muscle function, and potential use as cardioprotective and neuroprotective agents. Extensive laboratory and pre-clinical studies have revealed that these off-label applications may be derived from the ability of acetaminophen to function as an antioxidant. Herein, we will highlight these novel applications of acetaminophen, and attempt, where possible, to highlight how these findings may lead to new directions of inquiry and clinical relevance of other disorders

    Regulation of Iron-Related Molecules In the Rat Hippocampus: Sex- and Age-Associated Differences

    Get PDF
    Iron accumulation, especially that of free oxidized ferrous iron, has been shown to induce tissue oxidative damage and contribute to brain aging and the development of neurodegenerative disease. Here we examine whether sex and advanced age affect the expression of iron-related molecules that participate in regulating free iron levels (heme oxygenase I (HOI), iron-regulatory protein I (IRPI), and ferritin heavy chain (FTH)) and whether changes in the expression of these molecules are associated with differences in the expression of alpha-synuclein (ASN) which is thought to be a critical regulator in the pathogenesis of neurodegeneration. Using a well-established aging animal model, we demonstrate that the expression of HOI, FTH, and IRPI mRNAs is higher in the female hippocampus than that observed in male Fischer 344/NNiaHSD x Brown Norway/BiNia (F344BN) rats, regardless of age group. Consistent with these sexassociated alterations in iron-related regulators, the expression of ASN mRNA and protein in the female hippocampus was lower than that found in male rats. These results suggest a sex-dependent difference in regulating the expression of molecules involved in iron metabolism and neurodegeneration. A similar finding in humans, if present, may help to shed light on why sex may affect the incidence of neurodegenerative disorders

    Uniaxial stretch-induced regulation of mitogen-activated protein kinase, Akt and p70S6 kinase in the ageing Fischer 344 × Brown Norway rat aorta

    Get PDF
    The effects of ageing on the cardiovascular system contribute to substantial alterations in cellular morphology and function. The variables regulating these changes are unknown; however, one set of signalling molecules that may be of particular importance in mediating numerous cellular responses, including control of cell growth, differentiation and adaptation, are the proteins associated with the mitogen-activated protein kinase (MAPK) signalling systems. The MAPKs, in conjunction with the p70 S6k signalling cascade, have emerged as critical components for regulating numerous mechanotransduction-related cellular responses. Here we investigate the ability of uniaxial stretch to activate the MAPK and p70 S6k pathways in adult (6-month-old), aged (30-month-old) and very aged (36-month-old) Fischer 344/NNiaHSd × Brown Norway/BiNia (FBN) rats. Western blotting of the MAPK family proteins extracellular signal-regulated kinase (Erk) 1/2, p38- and c-Jun NH2-terminal kinase (Jnk)-MAPKs showed differential expression and activation between these proteins with age. An acute 15 min interval of 20% uniaxial stretch using an ex vivo aortic preparation demonstrated similar regulation of Erk1/2, p38- and Jnk-MAPK. However, ageing altered uniaxial induced p70 S6k pathway signalling. These observations confirm previous data demonstrating that MAPK proteins are mechanically regulated and also suggest that p70 S6k signalling expression and activation are controlled differently with ageing. Taken together, these data may help to explain, in part, the age-related changes in vascular morphology, function and response to injury

    Fluprostenol-Induced MAPK Signaling is Independent of Aging in Fischer 344/NNiaHSd x Brown Norway/BiNia Rat Aorta

    Get PDF
    The factors that regulate vascular mechanotransduction and how this process may be altered with aging are poorly understood and have not been widely studied. Recent data suggest that increased tissue loading can result in the release of prostaglandin F2 alpha (PGF2α) and other reports indicate that aging diminishes the ability of the aged aorta to activate mitogen activated protein kinase (MAPK) signaling in response to increased loading. Using ex vivo incubations, here we investigate whether aging affects the ability of the aorta to induce phosphorylation of extracellular signal-regulated kinase 1/2 (ERK½-MAPK), p38-MAPK, and Jun N-terminal kinase (JNK-MAPK) activation following stimulation with a PGF2α analog, fluprostenol. Compared to aortas from 6-mo animals, the amounts of ERK½- and p38-MAPK remained unchanged with aging, while the level of JNK-MAPK protein increased by 135% and 100% at 30- and 36-mo, respectively. Aging increased the basal phosphorylation of ERK½ (115% and 47%) and JNK (29% and 69%) (p \u3c0.05) in 30- and 36-mo aortas, while p38 phosphorylation levels remained unaltered. Compared to age-matched controls, fluprostenol induced phosphorylation of ERK½ (310%, 286%, and 554%), p38-MAPK (unchanged, 48%, and 148%), and JNK (78%, 88%, and 95%) in 6-, 30- and 36-mo aortas, respectively. These findings suggest that aging does not affect the ability of the rat aorta to activate ERK½-, p38-MAPK, and JNK-MAPK phosphorylation in response to PGF2α stimulation

    Diabetes alters vascular mechanotransduction: pressure-induced regulation of mitogen activated protein kinases in the rat inferior vena cava

    Get PDF
    BACKGROUND: Diabetes mellitus is an important risk factor for increased vein graft failure after bypass surgery. However, the cellular and molecular mechanism(s) underlying vessel attrition in this population remain largely unexplored. Recent reports have suggested that the pathological remodeling of vein grafts may be mediated by mechanically-induced activation of the mitogen activated protein kinase (MAPK) signaling pathways and the MAPK-related induction of caspase-3 activity. On the basis of these findings, we hypothesized that diabetes may be associated with alterations in how veins "sense" and "respond" to altered mechanical loading. METHODS: Inferior venae cavae (IVC) from the non-diabetic lean (LNZ) and the diabetic obese (OSXZ) Zucker rats were isolated and incubated ex vivo under basal or pressurized conditions (120 mmHg). Protein expression, basal activation and the ability of increased pressure to activate MAPK pathways and apoptosis-related signaling was evaluated by immunoblot analysis. RESULTS: Immunoblot analyses revealed differential expression and activation of extracellular signal-regulated kinase (ERK1/2), p38 and c-Jun NH2-terminal kinase (JNK) MAPKs in the IVCs of diabetic rats as compared to non-diabetic rats. In particular, the expression and basal phosphorylation of p38β- (52.3 ± 11.8%; 45.8 ± 18.2%), JNK 1- (21.5 ± 9.3%; 19.4 ± 11.6%) and JNK3-MAPK (16.8 ± 3.3%; 29.5 ± 17.6%) were significantly higher (P < 0.05) in the diabetic vena cava. An acute increase in IVC intraluminal pressure failed to increase the phosphorylation of ERK1-, JNK-2, or any of the p38-MAPKs in the diabetic obese Zucker rats. Also, IVC loading in the LNZ led to a 276.0 ± 36.0% and 85.8 ± 25.1% (P < 0.05) increase in the cleavage of caspase-3 and caspase-9, respectively, with no effect on these molecules in the OSXZ. No differences were found in the regulation of Bax and Bcl-2 between groups. However, basal expression levels of Akt, phospho-Akt, PTEN, phospho-PTEN and phospho-Bad were higher in the diabetic venae cavae (P < 0.05). CONCLUSION: These data suggest that diabetes is associated with significant alteration in the ability of the vena cava to activate MAPK- and apoptosis-related signaling. Whether these changes are associated with the increased vein graft attrition seen in the diabetic population will require further investigation

    Altered Regulation of Contraction-Induced Akt/mTOR/p70S6k Pathway Signaling in Skeletal Muscle of the Obese Zucker Rat

    Get PDF
    Increased muscle loading results in the phosphorylation of the 70 kDa ribosomal S6 kinase (p70S6k), and this event is strongly correlated with the degree of muscle adaptation following resistance exercise. Whether insulin resistance or the comorbidities associated with this disorder may affect the ability of skeletal muscle to activate p70S6k signaling following an exercise stimulus remains unclear. Here, we compare the contraction-induced activation of p70S6k signaling in the plantaris muscles of lean and insulin resistant obese Zucker rats following a single bout of increased contractile loading. Compared to lean animals, the basal phosphorylation of p70S6k (Thr389; 37.2% and Thr421/Ser424; 101.4%), Akt (Thr308; 25.1%), and mTOR (Ser2448; 63.0%) was higher in obese animals. Contraction increased the phosphorylation of p70S6k (Thr389), Akt (Ser473), and mTOR (Ser2448) in both models however the magnitude and kinetics of activation differed between models. These results suggest that contraction-induced activation of p70S6k signaling is altered in the muscle of the insulin resistant obese Zucker rat

    Chronic Paracetamol Treatment Influences Indices of Reactive Oxygen Species Accumulation in the Aging Fischer 344 X Brown Norway Rat Aorta

    Get PDF
    Previous reports have demonstrated that increased levels of reactive oxygen species (ROS) and alterations in cell signaling characterize aging in the Fischer 344 X Brown Norway (FBN) rat aorta. Other work has suggested that increases in ROS may be related to vascular wall thickening and the development of hypertension. Paracetamol (acetaminophen) is a potent antioxidant that has been found to diminish free radicals in ischemia-reperfusion studies. However, it remains unclear whether chronic paracetamol administration influences signaling or ROS accumulation in the aging aorta. FBN rats (27 months old; n=8) were subjected to 6 months of treatment with a therapeutic dose of paracetamol (30 mg/kg/day) and compared to age-matched untreated FBN rat controls (n=8). Compared to measurements in the aortae of 6-month old animals, tunica media thickness, tissue superoxide levels, and protein oxidation levels were 38 ± 7%, 92 ± 31%, and 7 ± 2% higher in the aortae of 33-month control animals (p ≤0.05). Chronic paracetamol treatment decreased tunica media thickness and the amount of oxidized protein by 13 ± 4% and 30 ± 1%, respectively (p ≤0.05). This finding of diminished aortic thickening was associated with increased phosphorylation (activation) of the mitogen activated protein kinases and diminished levels of the anti-apoptotic protein Bcl-2. Taken together, these data suggest that chronic paracetamol treatment may decrease the deleterious effects of aging in the FBN rat aorta

    Application of Poly(amidoamine) Dendrimers for Use in Bionanomotor Systems

    Get PDF
    The study and utilization of bionanomotors represents a rapid and progressing field of nanobiotechnology. Here, we demonstrate that poly(amidoamine) (PAMAM) dendrimers are capable of supporting heavy meromyosin dependent actin motility of similar quality to that observed using nitrocellulose, and that microcontact printing of PAMAM dendrimers can be exploited to produce tracks of active myosin motors leading to the restricted motion of actin filaments across a patterned surface. These data suggest that the use of dendrimer surfaces will increase the applicability of using protein biomolecular motors for nanotechnological applications

    Acetaminophen prevents aging-associated hyperglycemia in aged rats: effect of aging-associated hyperactivation of p38-MAPK and ERK1/2

    Get PDF
    Background Aging-related hyperglycemia is associated with increased oxidative stress and diminished muscle glucose transporter-4 (Glut4) that may be regulated, at least in part, by the mitogen-activated protein kinases (MAPK). Methods To test the possibility that aging-related hyperglycemia can be prevented by pharmacological manipulation of MAPK hyperactivation, aged (27-month old) Fischer 344/NNiaHSD × Brown Norway/BiNia F1 (F344BN) rats were administered acetaminophen (30 mg/kg body weight/day) for 6 months in drinking water. Results Hepatic histopathology, serum aspartate aminotransferase and alanine aminotransferase analyses suggested that chronic acetaminophen did not cause hepatotoxicity. Compared with adult (6-month) and aged (27-month) rats, very aged rats (33-month) had higher levels of blood glucose, phosphorylation of soleus p38-MAPK and extracellular-regulated kinase 1/2 (ERK1/2), superoxide and oxidatively modified proteins (p \u3c 0.05), and these changes were associated with decreased soleus Glut4 protein abundance (p \u3c 0.05). Chronic acetaminophen treatment attenuated age-associated increase in blood glucose by 61.3% (p \u3c 0.05) and increased soleus Glut4 protein by 157.2% (p \u3c 0.05). These changes were accompanied by diminished superoxide levels, decrease in oxidatively modified proteins (−60.8%; p \u3c 0.05) and reduced p38-MAPK and ERK1/2 hyperactivation (−50.4% and − 35.4%, respectively; p \u3c 0.05). Conclusions These results suggest that acetaminophen may be useful for the treatment of age-associated hyperglycemia
    corecore