45 research outputs found

    Hydrodynamics of liquids of arbitrarily curved flux-lines and vortex loops

    Full text link
    We derive a hydrodynamic model for a liquid of arbitrarily curved flux-lines and vortex loops using the mapping of the vortex liquid onto a liquid of relativistic charged quantum bosons in 2+1 dimensions recently suggested by Tesanovic and by Sudbo and collaborators. The loops in the flux-line system correspond to particle-antiparticle fluctuations in the bosons. We explicitly incorporate the externally applied magnetic field which in the boson model corresponds to a chemical potential associated with the conserved charge density of the bosons. We propose this model as a convenient and physically appealing starting point for studying the properties of the vortex liquid

    Critical depinning force and vortex lattice order in disordered superconductors

    Full text link
    We simulate the ordering of vortices and its effects on the critical current in superconductors with varied vortex-vortex interaction strength and varied pinning strengths for a two-dimensional system. For strong pinning the vortex lattice is always disordered and the critical depinning force only weakly increases with decreasing vortex-vortex interactions. For weak pinning the vortex lattice is defect free until the vortex-vortex interactions have been reduced to a low value, when defects begin to appear with a simultaneous rapid increase in the critical depinning force. In each case the depinning force shows a maximum for non-interacting vortices. The relative height of the peak increases and the peak width decreases for decreasing pinning strength in excellent agreement with experimental trends associated with the peak effect. We show that scaling relations exist between the distance between defects in the vortex lattice and the critical depinning force.Comment: 5 pages, 6 figure

    Fluctuations and Intrinsic Pinning in Layered Superconductors

    Full text link
    A flux liquid can condense into a smectic crystal in a pure layered superconductors with the magnetic field oriented nearly parallel to the layers. If the smectic order is commensurate with the layering, this crystal is {\sl stable} to point disorder. By tilting and adjusting the magnitude of the applied field, both incommensurate and tilted smectic and crystalline phases are found. We discuss transport near the second order smectic freezing transition, and show that permeation modes lead to a small non--zero resistivity and large but finite tilt modulus in the smectic crystal.Comment: 4 pages + 1 style file + 1 figure (as uufile) appended, REVTEX 3.

    Vortex dynamics and states of artificially layered superconducting films with correlated defects

    Full text link
    Linear resistances and IVIV-characteristics have been measured over a wide range in the parameter space of the mixed phase of multilayered a-TaGe/Ge films. Three films with varying interlayer coupling and correlated defects oriented at an angle 25\approx 25 from the film normal were investigated. Experimental data were analyzed within vortex glass models and a second order phase transition from a resistive vortex liquid to a pinned glass phase. Various vortex phases including changes from three to two dimensional behavior depending on anisotropy have been identified. Careful analysis of IVIV-characteristics in the glass phases revealed a distinctive TT and HH-dependence of the glass exponent μ\mu. The vortex dynamics in the Bose-glass phase does not follow the predicted behavior for excitations of vortex kinks or loops.Comment: 16 pages, 10 figures, 3 table

    Dynamic Vortex Phases and Pinning in Superconductors with Twin Boundaries

    Full text link
    We investigate the pinning and driven dynamics of vortices interacting with twin boundaries using large scale molecular dynamics simulations on samples with near one million pinning sites. For low applied driving forces, the vortex lattice orients itself parallel to the twin boundary and we observe the creation of a flux gradient and vortex free region near the edges of the twin boundary. For increasing drive, we find evidence for several distinct dynamical flow phases which we characterize by the density of defects in the vortex lattice, the microscopic vortex flow patterns, and orientation of the vortex lattice. We show that these different dynamical phases can be directly related to microscopically measurable voltage - current V(I) curves and voltage noise. By conducting a series of simulations for various twin boundary parameters we derive several vortex dynamic phase diagrams.Comment: 5 figures, to appear in Phys. Rev.

    Unified order-disorder vortex phase transition in high-Tc superconductors

    Full text link
    The diversity of vortex melting and solid-solid transition lines measured in different high-Tc_{c} superconductors is explained, postulating a unified order-disorder phase transition driven by both thermally- and disorder-induced fluctuations. The temperature dependence of the transition line and the nature of the disordered phase (solid, liquid, or pinned liquid) are determined by the relative contributions of these fluctuations and by the pinning mechanism. By varying the pinning mechanism and the pinning strength one obtains a spectrum of monotonic and non-monotonic transition lines similar to those measured in Bi2_{2}Sr2_{2}CaCu2_{2}O%_{8}, YBa2_{2}Cu3_{3}O7δ_{7-\delta}, Nd1.85_{1.85}Ce0.15_{0.15}CuO%_{4-\delta}, Bi1.6_{1.6}Pb0.4_{0.4}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} and (La0.937% _{0.937}Sr0.063_{0.063})2_{2}CuO4_{4}Comment: To be published in Phys. Rev. B Rapid Com

    Interactions, Distribution of Pinning Energies, and Transport in the Bose Glass Phase of Vortices in Superconductors

    Full text link
    We study the ground state and low energy excitations of vortices pinned to columnar defects in superconductors, taking into account the long--range interaction between the fluxons. We consider the ``underfilled'' situation in the Bose glass phase, where each flux line is attached to one of the defects, while some pins remain unoccupied. By exploiting an analogy with disordered semiconductors, we calculate the spatial configurations in the ground state, as well as the distribution of pinning energies, using a zero--temperature Monte Carlo algorithm minimizing the total energy with respect to all possible one--vortex transfers. Intervortex repulsion leads to strong correlations whenever the London penetration depth exceeds the fluxon spacing. A pronounced peak appears in the static structure factor S(q)S(q) for low filling fractions f0.3f \leq 0.3. Interactions lead to a broad Coulomb gap in the distribution of pinning energies g(ϵ)g(\epsilon) near the chemical potential μ\mu, separating the occupied and empty pins. The vanishing of g(ϵ)g(\epsilon) at μ\mu leads to a considerable reduction of variable--range hopping vortex transport by correlated flux line pinning.Comment: 16 pages (twocolumn), revtex, 16 figures not appended, please contact [email protected]

    Disorder and thermally driven vortex-lattice melting in La{2-x}Sr{x}CuO{4} crystals

    Full text link
    Magnetization measurements in La{2-x}Sr{x}CuO{4} crystals indicate vortex order-disorder transition manifested by a sharp kink in the second magnetization peak. The transition field exhibits unique temperature dependence, namely a strong decrease with temperature in the entire measured range. This behavior rules out the conventional interpretation of a disorder-driven transition into an entangled vortex solid phase. It is shown that the transition in La{2-x}Sr{x}CuO{4} is driven by both thermally- and disorder-induced fluctuations, resulting in a pinned liquid state. We conclude that vortex solid-liquid, solid-solid and solid to pinned-liquid transitions are different manifestations of the same thermodynamic order-disorder transition, distinguished by the relative contributions of thermal and disorder-induced fluctuations.Comment: To be published in phys. Rev. B Rapid Com

    Dynamic Ordering and Transverse Depinning of a Driven Elastic String in a Disordered Media

    Full text link
    We examine the dynamics of an elastic string interacting with quenched disorder driven perpendicular and parallel to the string. We show that the string is the most disordered at the depinning transition but with increasing drive partial ordering is regained. For low drives the noise power is high and we observe a 1/f^2 noise signature crossing over to a white noise character with low power at higher drives. For the parallel driven moving string there is a finite transverse critical depinning force with the depinning transition occuring by the formation of running kinks.Comment: 4 pages, 4 postscript figure

    Interstitials, Vacancies and Dislocations in Flux-Line Lattices: A Theory of Vortex Crystals, Supersolids and Liquids

    Full text link
    We study a three dimensional Abrikosov vortex lattice in the presence of an equilibrium concentration of vacancy, interstitial and dislocation loops. Vacancies and interstitials renormalize the long-wavelength bulk and tilt elastic moduli. Dislocation loops lead to the vanishing of the long-wavelength shear modulus. The coupling to vacancies and interstitials - which are always present in the liquid state - allows dislocations to relax stresses by climbing out of their glide plane. Surprisingly, this mechanism does not yield any further independent renormalization of the tilt and compressional moduli at long wavelengths. The long wavelength properties of the resulting state are formally identical to that of the ``flux-line hexatic'' that is a candidate ``normal'' hexatically ordered vortex liquid state.Comment: 21 RevTeX pgs, 7 eps figures uuencoded; corrected typos, published versio
    corecore