148 research outputs found
Molecular analysis of the Vibrio alginolyticus sucrose utilization system cloned into Escherichia coli
Bibliography: pages 135-150.This dissertation represents a continuation of the research on the sucrose utilization system of the aerobic, collagenolytic, halotolerant, Gram-negative bacterium Vibrio alginolyticus. The V. alginolyticus sucrose utilization system originally cloned into Escherichia coli on plasmid pVS100 involves a sucrase enzyme (gene scrB), and a sucrose uptake system. Synthesis of the sucrase and sucrose uptake system in V. alginolyticus and E. coli(pVS100) is regulated. The nucleotide sequence and analysis of DNA regions encoding the sucrose uptake and regulatory functions are presented here. An investigation of the expression of the. V. alginolyticus sucrose utilization system in Bacillus subtilis is also presented
Vitamin D enzymes (CYP27A1, CYP27B1 and CYP24A1) and receptor expression in non-melanoma skin cancer
No abstract available for this paper
A Monte Carlo calculation of neutron reflection from various curved surfaces
Plane parallel neutron beams normally incident upon the curved surface of a solid reflector are studied with the Monte Carlo method. The geometries studied are cylindrical, parabolic, and hemispherical. It is shown that when the curved surface is cylindrical, a small focusing effect occurs in the reflected neutron beam. Parabolic and hemispherical surfaces do not show focusing . A study of the factors which determine the spatial dependence of the reflected flux shows that the probability of emergence of a neutron, traveling a fixed distance from a point inside the reflector, depends upon the curvature of the surface. It is only for cylindrical geometry that this probability as a function of distance shows a peak which results in focusing --Abstract, page ii
Is There a Link between Vitamin B and Multiple Sclerosis?
Background: Damage to the myelin sheath (demyelination) is one of the main manifestations of multiple sclerosis (MS). Interestingly, both MS and vitamin B deficiencies result in severe myelin degeneration, leading to loss in neuronal signal transmission.
Objective: Deficiency in vitamin B complex vary, although common symptoms include fatigue, increased oxidative stress, inflammation and demyelination. In particular, vitamin B12 (cobalamin) has had increased attention for its role in the methylation process, involvement in myelination and remyelination, and reversal of MS symptoms.
Method: Here, we discuss the role of vitamin B complex (B1, B2, B3, B4, B5, B6, B7, B9, B12) in MS.
Results: The anti-inflammatory and re-myelinating attributes of vitamin B complex members are promising, despite limited clinical studies.
Conclusion: There is an urgent need for larger studies to determine the role of vitamin B supplementation alone, or in combination with other therapeutic agents, in prevention or reversal of MS, and aid in improved quality of life of MS patients
The use of a quartz crystal microbalance with dissipation for the measurement of protein–protein interactions: a qualitative and quantitative analysis of the interactions between molecular chaperones
Biotechnology research and innovation depends on the ability to understand the molecular mechanisms of biological processes such as protein–protein and protein–ligand interactions. Surface plasmon resonance (SPR) spectroscopy is now well established as a quantitative technique for monitoring biomolecular interactions. In this study, we examined the recently developed quartz crystal microbalance with dissipation (QCM-D) method as an alternative to SPR spectroscopy to investigate protein–protein interactions, in particular, for chaperone–co-chaperone interactions. In mammalian cells, the Hsp70/Hsp90 organizing protein (Hop) is a co-chaperone required for the association of the molecular chaperones, heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90). The objective of this research was to characterize qualitatively and quantitatively the interaction of Hsp70 with Hop. A truncated version of Hop consisting of only the C-terminal region and lacking the Hsp70-binding domain (GST-C-Hop) was used as a non-Hsp70- binding control. Immobilized GST-Hop was found to bind Hsp70 successfully, displaying a QCM-D response consistent with formation of a complex that became slightly more flexible as the concentration of bound Hsp70 increased. GST-C-Hop did not bind to Hsp70, thereby validating the specificity of the GST-Hop interaction with Hsp70. The kinetics of the interaction was followed at different concentrations of Hsp70, and an apparent thermodynamic dissociation constant (KD value) in the micromolar range was determined that correlated well with the value derived previously using SPR. This study represents a proof-of-principle that QCM-D can be applied to the analysis of chaperone–co-chaperone interactions. The economic and technical accessibility of QCM-D makes it a valuable tool for analyses of chaperone interactions, and protein– protein interactions in general
Exported plasmodial J domain protein, PFE0055c, and PfHsp70-x form a specific co-chaperone-chaperone partnership
Plasmodium falciparum is a unicellular protozoan parasite and causative agent of a severe form of malaria in humans, accounting for very high worldwide fatality rates. At the molecular level, survival of the parasite within the human host is mediated by P. falciparum heat shock proteins (PfHsps) that provide protection during febrile episodes. The ATP-dependent chaperone activity of Hsp70 relies on the co-chaperone J domain protein (JDP), with which it forms a chaperone-co-chaperone complex. The exported P. falciparum JDP (PfJDP), PFA0660w, has been shown to stimulate the ATPase activity of the exported chaperone, PfHsp70-x. Furthermore, PFA0660w has been shown to associate with another exported PfJDP, PFE0055c, and PfHsp70-x in J-dots, highly mobile structures found in the infected erythrocyte cytosol. Therefore, the present study aims to conduct a structural and functional characterization of the full-length exported PfJDP, PFE0055c. Recombinant PFE0055c was successfully expressed and purified and found to stimulate the basal ATPase activity of PfHsp70-x to a greater extent than PFA0660w but, like PFA0660w, did not significantly stimulate the basal ATPase activity of human Hsp70. Small-molecule inhibition assays were conducted to determine the effect of known inhibitors of JDPs (chalcone, C86) and Hsp70 (benzothiazole rhodacyanines, JG231 and JG98) on the basal and PFE0055c-stimulated ATPase activity of PfHsp70-x. In this study, JG231 and JG98 were found to inhibit both the basal and PFE0055c-stimulated ATPase activity of PfHsp70-x. C86 only inhibited the PFE0055c-stimulated ATPase activity of PfHsp70-x, consistent with PFE0055c binding to PfHsp70-x through its J domain. This research has provided further insight into the molecular basis of the interaction between these exported plasmodial chaperones, which could inform future antimalarial drug discovery studies
In silico identification of modulators of J domain protein-Hsp70 interactions in Plasmodium falciparum: a drug repurposing strategy against malaria
Plasmodium falciparum is a unicellular, intracellular protozoan parasite, and the causative agent of malaria in humans, a deadly vector borne infectious disease. A key phase of malaria pathology, is the invasion of human erythrocytes, resulting in drastic remodeling by exported parasite proteins, including molecular chaperones and co-chaperones. The survival of the parasite within the human host is mediated by P. falciparum heat shock protein 70s (PfHsp70s) and J domain proteins (PfJDPs), functioning as chaperones-co-chaperones partnerships. Two complexes have been shown to be important for survival and pathology of the malaria parasite: PfHsp70-x-PFE0055c (exported); and PfHsp70-2-PfSec63 (endoplasmic reticulum). Virtual screening was conducted on the drug repurposing library, the Pandemic Response Box, to identify small-molecules that could specifically disrupt these chaperone complexes. Five top ranked compounds possessing preferential binding affinity for the malarial chaperone system compared to the human system, were identified; three top PfHsp70-PfJDP binders, MBX 1641, zoliflodacin and itraconazole; and two top J domain binders, ezetimibe and a benzo-diazepinone. These compounds were validated by repeat molecular dockings and molecular dynamics simulation, resulting in all the compounds, except for MBX 1461, being confirmed to bind preferentially to the malarial chaperone system. A detailed contact analysis of the PfHsp70-PfJDP binders identified two different types of modulators, those that potentially inhibit complex formation (MBX 1461), and those that potentially stabilize the complex (zoliflodacin and itraconazole). These data suggested that zoliflodacin and itraconazole are potential novel modulators specific to the malarial system. A detailed contact analysis of the J domain binders (ezetimibe and the benzo-diazepinone), revealed that they bound with not only greater affinity but also a better pose to the malarial J domain compared to that of the human system. These data suggested that ezetimibe and the benzo-diazepinone are potential specific inhibitors of the malarial chaperone system. Both itraconazole and ezetimibe are FDA-approved drugs, possess anti-malarial activity and have recently been repurposed for the treatment of cancer. This is the first time that such drug-like compounds have been identified as potential modulators of PfHsp70-PfJDP complexes, and they represent novel candidates for validation and development into anti-malarial drugs
Plasmodial HSP70s are functionally adapted to the malaria parasite life cycle
The human malaria parasite, Plasmodium falciparum, encodes a minimal complement of six heat shock protein 70s (PfHSP70s), some of which are highly expressed and are thought to play an important role in the survival and pathology of the parasite. In addition to canonical features of molecular chaperones, these HSP70s possess properties that reflect functional adaptation to a parasitic life style, including resistance to thermal insult during fever periods and host–parasite interactions. The parasite even exports an HSP70 to the host cell where it is likely to be involved in host cell modification. This review focuses on the features of the PfHSP70s, particularly with respect to their adaptation to the malaria parasite life cycle
The role of gaping behaviour in habitat partitioning between coexisting intertidal mussels
Background
Environmental heterogeneity plays a major role in invasion and coexistence dynamics. Habitat segregation between introduced species and their native competitors is usually described in terms of different physiological and behavioural abilities. However little attention has been paid to the effects of behaviour in habitat partitioning among invertebrates, partially because their behavioural repertoires, especially marine benthic taxa, are extremely limited. This study investigates the effect of gaping behaviour on habitat segregation of the two dominant mussel species living in South Africa, the invasive Mytilus galloprovincialis and the indigenous Perna perna. These two species show partial habitat segregation on the south coast of South Africa, the lower and upper areas of the mussel zone are dominated by P. perna and M. galloprovincialis respectively, with overlap in the middle zone. During emergence, intertidal mussels will either keep the valves closed, minimizing water loss and undergoing anaerobic metabolism, or will periodically open the valves maintaining a more efficient aerobic metabolism but increasing the risk of desiccation.
Results
Our results show that, when air exposed, the two species adopt clearly different behaviours. M. galloprovincialis keeps the shell valves closed, while P. perna periodically gapes. Gaping behaviour increased water loss in the indigenous species, and consequently the risk of desiccation. The indigenous species expressed significantly higher levels of stress protein (Hsp70) than M. galloprovincialis under field conditions and suffered significantly higher mortality rates when exposed to air in the laboratory. In general, no intra-specific differences were observed in relation to intertidal height. The absence of gaping minimises water loss but exposes the invasive species to other stresses, probably related to anoxic respiration.
Conclusions
Gaping affects tolerance to desiccation, thus influencing the vertical zonation of the two species. Valve closure exposes the invasive species to higher stress and associated energy demands, but it minimizes water loss, allowing this species to dominate the upper mussel zone, where the gaping indigenous P. perna cannot survive. Thus even very simple behaviour can influence the outcome of interactions between indigenous and invasive species
Recommended from our members
Plasmodium falciparum heat shock proteins as antimalarial drug targets: An update.
Global efforts to eradicate malaria are threatened by multiple factors, particularly the emergence of antimalarial drug resistant strains of Plasmodium falciparum. Heat shock proteins (HSPs), particularly P. falciparum HSPs (PfHSPs), represent promising drug targets due to their essential roles in parasite survival and virulence across the various life cycle stages. Despite structural similarities between human and malarial HSPs posing challenges, there is substantial evidence for subtle differences that could be exploited for selective drug targeting. This review provides an update on the potential of targeting various PfHSP families (particularly PfHSP40, PfHSP70, and PfHSP90) and their interactions within PfHSP complexes as a strategy to develop new antimalarial drugs. In addition, the need for a deeper understanding of the role of HSP complexes at the host-parasite interface is highlighted, especially heterologous partnerships between human and malarial HSPs, as this opens novel opportunities for targeting protein-protein interactions crucial for malaria parasite survival and pathogenesis
- …