42,792 research outputs found
Structure, bonding and morphology of hydrothermally synthesised xonotlite
The authors have systematically investigated the role of synthesis conditions upon the structure and morphology of xonotlite. Starting with a mechanochemically prepared, semicrystalline phase with Ca/Si=1, the authors have prepared a series of xonotlite samples hydrothermally, at temperatures between 200 and 250 degrees C. Analysis in each case was by X-ray photoelectron spectroscopy, environmental scanning electron microscopy and X-ray diffraction. The authors’ use of a much lower water/solid ratio has indirectly confirmed the ‘through solution’ mechanism of xonotlite formation, where silicate dissolution is a key precursor of xonotlite formation. Concerning the role of temperature, too low a temperature (~200 degrees C) fails to yield xonotlite or leads to increased number of structural defects in the silicate chains of xonotlite and too high a temperature (>250 degrees C) leads to degradation of the xonotlite structure, through leaching of interchain calcium. Synthesis duration meanwhile leads to increased silicate polymerisation due to diminishing of the defects in the silicate chains and more perfect crystal morphologies
Variable pitch fan system for NASA/Navy research and technology aircraft
Preliminary design of a shaft driven, variable-pitch lift fan and lift-cruise fan was conducted for a V/STOL Research and Technology Aircraft. The lift fan and lift-cruise fan employed a common rotor of 157.5 cm diameter, 1.18 pressure ratio variable-pitch fan designed to operate at a rotor-tip speed of 284 mps. Fan performance maps were prepared and detailed aerodynamic characteristics were established. Cost/weight/risk trade studies were conducted for the blade and fan case. Structural sizing was conducted for major components and weights determined for both the lift and lift-cruise fans
Macroscopic coherence effects in a mesoscopic system: Weak localization of thin silver films in an undergraduate lab
We present an undergraduate lab that investigates weak localization in thin
silver films. The films prepared in our lab have thickness, , between 60-200
\AA, a mesoscopic length scale. At low temperatures, the inelastic dephasing
length for electrons, , exceeds the thickness of the film (), and the films are then quasi-2D in nature. In this situation, theory
predicts specific corrections to the Drude conductivity due to coherent
interference between conducting electrons' wavefunctions, a macroscopically
observable effect known as weak localization. This correction can be destroyed
with the application of a magnetic field, and the resulting magnetoresistance
curve provides information about electron transport in the film. This lab is
suitable for Junior or Senior level students in an advanced undergraduate lab
course.Comment: 16 pages, 9 figures. Replaces earlier version of paper rejected by
Am. J. Phys. because of too much content on vacuum systems. New version deals
with the undergraduate experiment on weak localization onl
- …