308 research outputs found
Localization of dexamethasone within dendritic core-multishell (CMS) nanoparticles and skin penetration properties studied by multi-frequency electron paramagnetic resonance (EPR) spectroscopy
The skin and especially the stratum corneum (SC) act as a barrier and protect epidermal cells and thus the whole body against xenobiotica of the external environment. Topical skin treatment requires an efficient drug delivery system (DDS). Polymer-based nanocarriers represent novel transport vehicles for dermal application of drugs. In this study dendritic core-multishell (CMS) nanoparticles were investigated as promising candidates. CMS nanoparticles were loaded with a drug (analogue) and were applied to penetration studies of skin. We determined by dual-frequency electron paramagnetic resonance (EPR) how dexamethasone (Dx) labelled with 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA) is associated with the CMS. The micro-environment of the drug loaded to CMS nanoparticles was investigated by pulsed high-field EPR at cryogenic temperature, making use of the fact that magnetic parameters (g-, A-matrices, and spin-lattice relaxation time) represent specific probes for the micro-environment. Additionally, the rotational correlation time of spin-labelled Dx was probed by continuous wave EPR at ambient temperature, which provides independent information on the drug environment. Furthermore, the penetration depth of Dx into the stratum corneum of porcine skin after different topical applications was investigated. The location of Dx in the CMS nanoparticles is revealed and the function of CMS as penetration enhancers for topical application is shown
Site-selective measurement of coupled spin pairs in an organic semiconductor
From organic electronics to biological systems, understanding the role of intermolecular interactions between spin pairs is a key challenge. Here we show how such pairs can be selectively addressed with combined spin and optical sensitivity. We demonstrate this for bound pairs of spin-triplet excitations formed by singlet fission, with direct applicability across a wide range of synthetic and biological systems. We show that the site sensitivity of exchange coupling allows distinct triplet pairs to be resonantly addressed at different magnetic fields, tuning them between optically bright singlet (S=0) and dark triplet quintet (S=1,2) configurations: This induces narrow holes in a broad optical emission spectrum, uncovering exchange-specific luminescence. Using fields up to 60 T, we identify three distinct triplet-pair sites, with exchange couplings varying over an order of magnitude (0.3–5 meV), each with its own luminescence spectrum, coexisting in a single material. Our results reveal how site selectivity can be achieved for organic spin pairs in a broad range of systems
Probing the wave function and dynamics of the quintet multiexciton state with coherent control in a singlet fission material
High-spin states play a key role in chemical reactions found in nature. In artificial molecular systems, singlet fission produces a correlated triplet-pair state, a spin-bearing excited state that can be harnessed for more efficient solar-energy conversion and photocatalysis. In particular, triplet-pair states with overall quintet character (total spin S=2) have been discovered, but many of the fundamental properties of these biexciton states remain unexplored. The net spin of these pair states makes spin-sensitive probes attractive for their characterization. Combined with their surprisingly long spin coherence (of order microseconds), this opens up techniques relying on coherent spin control. Here we apply coherent manipulation of triplet-pair states to (i) isolate their spectral signatures from coexisting free triplets and (ii) selectively couple quintet and triplet states to specific nuclear spins. Using this approach, we separate quintet and triplet transitions and extract the relaxation dynamics and hyperfine couplings of the fission-borne spin states. Our results highlight the distinct properties of correlated and free triplet excitons and demonstrate optically induced nuclear spin polarization by singlet fission
Chirality-Induced Spin Selectivity: An Enabling Technology for Quantum Applications
Molecular spins are promising building blocks of future quantum technologies thanks to the unparalleled flexibility provided by chemistry, which allows the design of complex structures targeted for specific applications. However, their weak interaction with external stimuli makes it difficult to access their state at the single-molecule level, a fundamental tool for their use, for example, in quantum computing and sensing. Here, an innovative solution exploiting the interplay between chirality and magnetism using the chirality-induced spin selectivity effect on electron transfer processes is foreseen. It is envisioned to use a spin-to-charge conversion mechanism that can be realized by connecting a molecular spin qubit to a dyad where an electron donor and an electron acceptor are linked by a chiral bridge. By numerical simulations based on realistic parameters, it is shown that the chirality-induced spin selectivity effect could enable initialization, manipulation, and single-spin readout of molecular qubits and qudits even at relatively high temperatures
Signal transduction in light-oxygen-voltage receptors lacking the adduct- forming cysteine residue
Light–oxygen–voltage (LOV) receptors sense blue light through the
photochemical generation of a covalent adduct between a flavin-nucleotide
chromophore and a strictly conserved cysteine residue. Here we show that,
after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes
light-induced dimerization and signalling because of flavin photoreduction to
the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV
histidine kinase YF1 to the NSQ modulates activity and downstream effects on
gene expression. Signal transduction in both proteins hence hinges on flavin
protonation, which is common to both the cysteinyl adduct and the NSQ. This
general mechanism is also conserved by natural cysteine-less, LOV-like
regulators that respond to chemical or photoreduction of their flavin
cofactors. As LOV proteins can react to light even when devoid of the adduct-
forming cysteine, modern LOV photoreceptors may have arisen from ancestral
redox-active flavoproteins. The ability to tune LOV reactivity through
photoreduction may have important implications for LOV mechanism and
optogenetic applications
Nanocrystals for Improved Drug Delivery of Dexamethasone in Skin Investigated by EPR Spectroscopy
Nanocrystals represent an improvement over the traditional nanocarriers for dermal application, providing the advantages of 100% drug loading, a large surface area, increased adhesion, and the potential for hair follicle targeting. To investigate their advantage for drug delivery, compared to a base cream formulation, dexamethasone (Dx), a synthetic glucocorticoid frequently used for the treatment of inflammatory skin diseases, was covalently linked with the paramagnetic probe 3-(carboxy)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA) to DxPCA. To investigate the penetration efficiency between these two vehicles, electron paramagnetic resonance (EPR) spectroscopy was used, which allows the quantification of a spin-labeled drug in different skin layers and the monitoring of the drug release. The penetration behavior in excised healthy and barrier-disrupted porcine skin was monitored by EPR, and subsequently analyzed using a numerical diffusion model. As a result, diffusion constants and free energy values in the different layers of the skin were identified for both formulations. Dx-nanocrystals showed a significantly increased drug amount that penetrated into viable epidermis and dermis of intact (factor 3) and barrier-disrupted skin (factor 2.1) compared to the base cream formulation. Furthermore, the observed fast delivery of the spin-labeled drug into the skin (80% DxPCA within 30 min) and a successive release from the aggregate unit into the viable tissue makes these nanocrystals very attractive for clinical applications
Probing the wave function and dynamics of the quintet multiexciton state with coherent control in a singlet fission material
High-spin states play a key role in chemical reactions found in nature. In artificial molecular systems, singlet fission produces a correlated triplet-pair state, a spin-bearing excited state that can be harnessed for more efficient solar-energy conversion and photocatalysis. In particular, triplet-pair states with overall quintet character (total spin
S
=
2
) have been discovered, but many of the fundamental properties of these biexciton states remain unexplored. The net spin of these pair states makes spin-sensitive probes attractive for their characterization. Combined with their surprisingly long spin coherence (of order microseconds), this opens up techniques relying on coherent spin control. Here we apply coherent manipulation of triplet-pair states to (i) isolate their spectral signatures from coexisting free triplets and (ii) selectively couple quintet and triplet states to specific nuclear spins. Using this approach, we separate quintet and triplet transitions and extract the relaxation dynamics and hyperfine couplings of the fission-borne spin states. Our results highlight the distinct properties of correlated and free triplet excitons and demonstrate optically induced nuclear spin polarization by singlet fission
Recommended from our members
Site-selective measurement of coupled spin pairs in an organic semiconductor.
From organic electronics to biological systems, understanding the role of intermolecular interactions between spin pairs is a key challenge. Here we show how such pairs can be selectively addressed with combined spin and optical sensitivity. We demonstrate this for bound pairs of spin-triplet excitations formed by singlet fission, with direct applicability across a wide range of synthetic and biological systems. We show that the site sensitivity of exchange coupling allows distinct triplet pairs to be resonantly addressed at different magnetic fields, tuning them between optically bright singlet ([Formula: see text]) and dark triplet quintet ([Formula: see text]) configurations: This induces narrow holes in a broad optical emission spectrum, uncovering exchange-specific luminescence. Using fields up to 60 T, we identify three distinct triplet-pair sites, with exchange couplings varying over an order of magnitude (0.3-5 meV), each with its own luminescence spectrum, coexisting in a single material. Our results reveal how site selectivity can be achieved for organic spin pairs in a broad range of systems.This work was supported by HFMLRU/ FOM and LNCMI-CNRS, members of the European Magnetic Field Laboratory (EMFL) and by EPSRC (UK) via its membership to the EMFL (grant no. EP/N01085X/1 and NS/A000060/1) and through grant no. EP/M005143/1. L.R.W. acknowledges support of the Gates-Cambridge and Winton Scholarships. We acknowledge support from Labex ANR-10-LABX-0039-PALM, ANR SPINEX, and DFG SPP-1601 (Bi-464/10-2)
Site-selective measurement of coupled spin pairs in an organic semiconductor
From organic electronics to biological systems, understanding the role of
intermolecular interactions between spin pairs is a key challenge. Here we show
how such pairs can be selectively addressed with combined spin and optical
sensitivity. We demonstrate this for bound pairs of spin-triplet excitations
formed by singlet fission, with direct applicability across a wide range of
synthetic and biological systems. We show that the site-sensitivity of exchange
coupling allows distinct triplet pairs to be resonantly addressed at different
magnetic fields, tuning them between optically bright singlet (S=0) and dark
triplet, quintet (S=1,2) configurations: this induces narrow holes in a broad
optical emission spectrum, uncovering exchange-specific luminescence. Using
fields up to 60 T, we identify three distinct triplet-pair sites, with exchange
couplings varying over an order of magnitude (0.3-5 meV), each with its own
luminescence spectrum, coexisting in a single material. Our results reveal how
site-selectivity can be achieved for organic spin pairs in a broad range of
systems.Comment: 8 pages, article, 7 pages, supporting informatio
- …