370 research outputs found

    Observation of coherent π0\pi^0 electroproduction on deuterons at large momentum transfer

    Get PDF
    The first experimental results for coherent π0\pi^0-electroproduction on the deuteron, e+de+d+π0e+d\to e+d +\pi^0, at large momentum transfer, are reported. The experiment was performed at Jefferson Laboratory at an incident electron energy of 4.05 GeV. A large pion production yield has been observed in a kinematical region for 1.1<Q2<<Q^2<1.8 GeV2^2, from threshold to 200 MeV excitation energy in the dπ0d\pi^0 system. The Q2Q^2-dependence is compared with theoretical predictions.Comment: 26 page

    Stopping of energetic sulfur and bromine ions in dense hydrogen plasma

    Get PDF
    The concepts of communicative space, media sphere and public sphere are sometimes used like synonyms one of the other. However, according to us, they are three different concepts: public sphere and media sphere are two distinct spaces symbolic systems which, both, are anchored in communicative spac

    G0^0 Electronics and Data Acquisition (Forward-Angle Measurements)

    Get PDF
    The G0^0 parity-violation experiment at Jefferson Lab (Newport News, VA) is designed to determine the contribution of strange/anti-strange quark pairs to the intrinsic properties of the proton. In the forward-angle part of the experiment, the asymmetry in the cross section was measured for ep\vec{e}p elastic scattering by counting the recoil protons corresponding to the two beam-helicity states. Due to the high accuracy required on the asymmetry, the G0^0 experiment was based on a custom experimental setup with its own associated electronics and data acquisition (DAQ) system. Highly specialized time-encoding electronics provided time-of-flight spectra for each detector for each helicity state. More conventional electronics was used for monitoring (mainly FastBus). The time-encoding electronics and the DAQ system have been designed to handle events at a mean rate of 2 MHz per detector with low deadtime and to minimize helicity-correlated systematic errors. In this paper, we outline the general architecture and the main features of the electronics and the DAQ system dedicated to G0^0 forward-angle measurements.Comment: 35 pages. 17 figures. This article is to be submitted to NIM section A. It has been written with Latex using \documentclass{elsart}. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment In Press (2007

    HEAVY ION SECONDARY BEAMS

    Get PDF
    The possibility of producing secondary beams of radioactive nuclei is an interesting application of medium and high energy heavy ion beams. After a first attempt at CERN (1) , two experiments have been performed at GANIL, using 44 MeV/u 40Ar (2) and 65 MeV/u 180 projectiles. This paper recalls the results of the Ar experiment, and presents new data obtained with the 180 beam

    INVESTIGATION OF THE TRANSMISSION AND STOPPING OF LIGHT IONS PASSING THROUGH A PLASMA TARGET

    Full text link
    Transmission and energy losses of 2 MeV/u Carbon and Sulphur beams passing through a plasma target, have been extensively investigated. A hydrogen plasma ignited by an electrical discharge was coupled to the Orsay Tandem beam accelerator. Fluctuations in beam transmission have been observed and attributed to a magnetic focusing effect generated during the plasma evolution. Energy loss measurements were performed on the basis of time of flight techniques and indicate an enhanced stopping power of the plasma relative to its cold matter equivalent

    Strange Quark Contributions to Parity-Violating Asymmetries in the Backward Angle G0 Electron Scattering Experiment

    Get PDF
    We have measured parity-violating asymmetries in elastic electron-proton and quasi-elastic electron-deuteron scattering at Q^2 = 0.22 and 0.63 GeV^2. They are sensitive to strange quark contributions to currents in the nucleon, and to the nucleon axial current. The results indicate strange quark contributions of < 10% of the charge and magnetic nucleon form factors at these four-momentum transfers. We also present the first measurement of anapole moment effects in the axial current at these four-momentum transfers.Comment: 5 pages, 2 figures, changed references, typo, and conten

    Transverse Beam Spin Asymmetries at Backward Angles in Elastic Electron-Proton and Quasi-elastic Electron-Deuteron Scattering

    Get PDF
    We have measured the beam-normal single-spin asymmetries in elastic scattering of transversely polarized electrons from the proton, and performed the first measurement in quasi-elastic scattering on the deuteron, at backward angles (lab scattering angle of 108 degrees) for Q2 = 0.22 GeV^2/c^2 and 0.63 GeV^2/c^2 at beam energies of 362 MeV and 687 MeV, respectively. The asymmetry arises due to the imaginary part of the interference of the two-photon exchange amplitude with that of single photon exchange. Results for the proton are consistent with a model calculation which includes inelastic intermediate hadronic (piN) states. An estimate of the beam-normal single-spin asymmetry for the scattering from the neutron is made using a quasi-static deuterium approximation, and is also in agreement with theory

    A SIGNATURE FOR ISOSCALAR-SPIN TRANSITIONS IN ([d,d) SCATTERING

    Full text link
    Three different signatures for isoscalar spin transitions in nuclei have been tested in the 12C(d,d)12C reaction at 400 MeV. These signatures have values close to zero for the natural parity states, and ranging from 0.22 to 0.50 for the ΔS=1 ΔT=0, 12.7 MeV state

    Measurement of the analyzing power Ay0 for the reaction H(p⃗,d)π+ between 1000 and 1300 MeV

    Get PDF
    The analyzing power Ay0 of the reaction H(p⃗,d)π+ has been measured at a fixed value of the Mandelstam variable ud=-0.17GeV2 for nine proton energies between 1000 and 1300 MeV. The experiment was performed at SATURNE with the SPES1 spectrometer. The data exhibit structure around √s≃2.37GeV. The origin of this structure could be related to a resonancelike behavior of the 1S0P or 1G4F partial amplitudes

    Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to Q^2 = 8.5 GeV^2

    Full text link
    Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleon's quark constituents; indeed, recent proton data have attracted intense theoretical interest. In this letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q2=5.2, 6.7, and 8.5 GeV2. By extending the range of Q2 for which GEp is accurately determined by more than 50%, these measurements will provide significant constraints on models of nucleon structure in the non-perturbative regime
    corecore