3 research outputs found

    Etude de la diversité génétique intraspécifique chez la bactérie lactique Œnococcus œni

    No full text
    La bactérie lactique Œnococcus œni joue un rôle essentiel lors de la vinification. Grâce à son aptitude à survivre à des pHs acides et des concentrations élevées en alcool, elle devient rapidement l'espèce majoritaire qui assure presque seule la fermentation malolactique. Toutefois, il existe naturellement une grande diversité de souches qui diffèrent par leur vitesse de croissance, leur efficacité fermentaire ou encore leur production d'arômes. Afin de mieux comprendre l'origine de ces variations phénotypiques, nous avons étudié plusieurs aspects de la diversité génétique intraspécifique d'Œ. œni. Premièrement, nous avons analysé la structure de population des souches d'Œ. œni en réalisant un double typage par séquençage multilocus et électrophorèse en champ pulsé. Ce travail révèle une espèce particulièrement conservée en termes de séquences, mais qui présente néanmoins une importante diversité génotypique en raison d'événements de recombinaison fréquents. D'autre part, nous avons mis en évidence deux sous-populations de souches distinctes par leurs répertoires alléliques et leurs profils de digestion. Deuxièmement, grâce à une approche par hybridation soustractive suppressive nous avons dressé un catalogue d'une centaine de gènes spécifiques de certaines souches d'Œ. œni. L'un d'entre eux, le gène dpsA, intervient d'ailleurs dans la réponse au stress oxydatif et favorise la survie bactérienne dans le vin. Troisièmement, nous avons caractérisé un plasmide de 18 Kb isolé chez une souche commerciale d'Œ. Œni. ll s'agit d'un plasmide de type thêta à faible nombre de copies. L'analyse de sa séquence révèle de fortes homologies avec des plasmides d'autres bactéries lactiques retrouvées dans le vin.The lactic acid bacterium Œnococcus œni plays a key role in winemaking. Since it can survive to acidic pHs and to high concentrations of alcohol, it quickly becomes the predominant species which performs the malolactic fermentation. However, there is a great natural diversity of strains which differ in terms of growth rate, fermentation efficiency or production of aromatic compounds. To better understand the origins of these phenotypic variations, we have studied several aspects of the intraspecific genetic diversity of Œ. œni. First, we have analyzed the population structure of Œ. œni strains using a dual approach involving multilocus sequencing and pulsed-field gel electrophoresis. This work revealed a species particularly well conserved in terms of sequences, but which shows a significant genotypic diversity due to frequent recombination events. In addition, we have detected two sub-populations distinguishable by their allelic repertories and their profiles of macrodigestion. Second, using suppressive subtractive hybridization, we have established a catalog of genes specific to certain strains of Œ. œni. The characterization of one of them, the mobile dpsA gene, revealed that it is involved in the response to oxidative stress and promotes bacterial survival in wine. Third, we have characterized a 18 Kb plasmid isolated from a commercial Œ. œni strain. This is a theta replicating and low copy number plasmid. Analysis of its sequence has revealed strong homologies with plasmids of other lactic acid bacteria frequently found in wine.VILLENAVE D'ORNON-Bib. ISVV (335502201) / SudocSudocFranceF

    Characterization of an acquired-dps-containing gene island in the lactic acid bacterium Oenococcus oeni

    No full text
    International audienceAims: To identify novel actors responsible for the marked adaptation of the Oenococcus oeni species to its environment. Methods and Results: Genomic surveillance of the available genome sequences from O. oeni indicated the presence of a small ORF, encoding a protein named DpsA. The cloned gene complemented the dps) mutant of Escherichia coli and conferred resistance to hydrogen peroxide, wine, and metals. The dpsA gene was flanked by IS-related elements. The entire region was characterized by an anomalously high GC content compared to those reported for oenococcal genomes. The dpsA gene was present in 15 of the 38 tested isolates. Positive strains originated from different geographical areas and sources. No change in tolerance to wine or to oxidative stress was observed between O. oeni strains harbouring dpsA and those not harbouring this gene. Conclusions: Some O. oeni have acquired a functional homologue to the dps gene from E. coli as part of a mobile element. Significance and Impact of the Study: DpsA probably increases the bacterial fitness in response to environmental challenges. However, the physiological condition under which it adds a selective advantage to O. oeni during wine-making remains to be found
    corecore