1,472 research outputs found

    Stellar granulation and interferometry

    Full text link
    Stars are not smooth. Their photosphere is covered by a granulation pattern associated with the heat transport by convection. The convection-related surface structures have different size, depth, and temporal variations with respect to the stellar type. The related activity (in addition to other phenomena such as magnetic spots, rotation, dust, etc.) potentially causes bias in stellar parameters determination, radial velocity, chemical abundances determinations, and exoplanet transit detections. The role of long-baseline interferometric observations in this astrophysical context is crucial to characterize the stellar surface dynamics and correct the potential biases. In this Chapter, we present how the granulation pattern is expected for different kind of stellar types ranging from main sequence to extremely evolved stars of different masses and how interferometric techniques help to study their photospheric dynamics.Comment: To appear in the Book of the VLTI School 2013, held 9-21 Sep 2013 Barcelonnette (France), "What the highest angular resolution can bring to stellar astrophysics?", Ed. Millour, Chiavassa, Bigot, Chesneau, Meilland, Stee, EAS Publications Series (2015

    Theoretical light curves of dipole oscillations in roAp stars

    Get PDF
    Context. The dipole modes are the most common geometry of oscillations in roAp stars inferred from photometric measurements and are therefore of special interest for asteroseismic purposes. Aims. We present a theoretical and analytical study of the light curves associated with dipole (ℓ = 1) pulsations of roAp stars in the framework of the revisited oblique pulsator model. Methods. We describe the light curves in terms of the inclination and polarization of the elliptical displacement vector of the dipole modes. We study the influence of the magnetic field and rotation on the shape of these light curves for both amplitudes and phases. Results. Despite the inclination of dipole mode with respect to the magnetic axis, we find that the dipole mode can have maxima that are in phase with the magnetic maxima. We apply our formalism to the well-known roAp star HR 3831 (HD 83368) to derive its mode properties. Our results are similar to those obtained by time-series spectroscopy. We also consider the cases of three other roAp stars, HD 6532, HD 99563, and HD 128898 (α Cir). Conclusions. We demonstrate that the formalism of the revisited oblique pulsator model is adequate to explain the properties of the photometric light curves associated with dipole modes in roAp stars. In addition, we show that the coincidence of pulsation and magnetic extrema can also occur for inclined modes with respect to the magnetic axis. With the stars considered in this paper, we conclude that the polarization of the modes present in roAp stars are quasi linearly polarized

    Complément a l’inventaire de la faune entomologique de la Camargue (3me note)

    Get PDF

    Un micromilieu important de Camargue les coquilles vides de mollusques

    Get PDF
    Bigot Louis. Un micromilieu important de Camargue : les coquilles vides de mollusques . In: La Terre et La Vie, Revue d'Histoire naturelle, tome 11, n°2-3, 1957. pp. 211-230

    Adaptive Covariance Estimation with model selection

    Get PDF
    We provide in this paper a fully adaptive penalized procedure to select a covariance among a collection of models observing i.i.d replications of the process at fixed observation points. For this we generalize previous results of Bigot and al. and propose to use a data driven penalty to obtain an oracle inequality for the estimator. We prove that this method is an extension to the matricial regression model of the work by Baraud

    Les effets de la vague de froid de février 1956 sur la faune des invertébrés terrestres de Camargue

    Get PDF

    Complément a l’inventaire de la faune entomologique de la Camargue (4me note)

    Get PDF

    Asteroseismic Theory of Rapidly Oscillating Ap Stars

    Get PDF
    This paper reviews some of the important advances made over the last decade concerning theory of roAp stars.Comment: 9 pages, 5 figure

    Complément a l’inventaire de la faune entomologique de la Camargue

    Get PDF

    A large sample of calibration stars for Gaia: log g from Kepler and CoRoT

    Full text link
    Asteroseismic data can be used to determine surface gravities with precisions of < 0.05 dex by using the global seismic quantities Deltanu and nu_max along with Teff and [Fe/H]. Surface gravity is also one of the four stellar properties to be derived by automatic analyses for 1 billion stars from Gaia data (workpackage GSP_Phot). We explore seismic data from MS F, G, K stars (solar-like stars) observed by Kepler as a potential calibration source for methods that Gaia will use for object characterisation (log g). We calculate log g for bright nearby stars for which radii and masses are known, and using their global seismic quantities in a grid-based method, we determine an asteroseismic log g to within 0.01 dex of the direct calculation, thus validating the accuracy of our method. We find that errors in Teff and mainly [Fe/H] can cause systematic errors of 0.02 dex. We then apply our method to a list of 40 stars to deliver precise values of surface gravity, i.e. sigma < 0.02 dex, and we find agreement with recent literature values. Finally, we explore the precision we expect in a sample of 400+ Kepler stars which have their global seismic quantities measured. We find a mean uncertainty (precision) on the order of <0.02 dex in log g over the full explored range 3.8 < log g < 4.6, with the mean value varying only with stellar magnitude (0.01 - 0.02 dex). We study sources of systematic errors in log g and find possible biases on the order of 0.04 dex, independent of log g and magnitude, which accounts for errors in the Teff and [Fe/H] measurements, as well as from using a different grid-based method. We conclude that Kepler stars provide a wealth of reliable information that can help to calibrate methods that Gaia will use, in particular, for source characterisation with GSP_Phot where excellent precision (small uncertainties) and accuracy in log g is obtained from seismic data.Comment: Accepted MNRAS, 15 pages (10 figures and 3 tables), v2=some rewording of two sentence
    • …
    corecore