25,422 research outputs found
Probing Fuzzballs with Particles, Waves and Strings
We probe D1D5 micro-state geometries with massless particles, waves and
strings. To this end, we study geodetic motion, Klein-Gordon equation and
string scattering in the resulting gravitational background. Due to the reduced
rotational symmetry, even in the simple case of a circular fuzzball, the system
cannot be integrated elementarily. Yet, for motion in the plane of the string
profile or in the orthogonal plane to it, one can compute the deflection angle
or the phase shift and identify the critical impact parameter, at which even a
massless probe is captured by the fuzzball if its internal momentum is properly
tuned. We find agreement among the three approaches, thus giving further
support to the fuzzball proposal at the dynamical level.Comment: 35 pages. Extended and improved discussions on the integrability of
the geodetic equations and on the critical impact parameter
Precision Spectroscopy and Higher Spin symmetry in the ABJM model
We revisit Kaluza-Klein compactification of 11-d supergravity on S^7/Z_k
using group theory techniques that may find application in other flux vacua
with internal coset spaces. Among the SO(2) neutral states, we identify
marginal deformations and fields that couple to the recently discussed
world-sheet instanton of Type IIA on CP^3. We also discuss charged states, dual
to monopole operators, and the Z_k projection of the Osp(4|8) singleton and its
tensor products. In particular, we show that the doubleton spectrum may account
for N=6 higher spin symmetry enhancement in the limit of vanishing 't Hooft
coupling in the boundary Chern-Simons theory.Comment: 44 page
A perturbative re-analysis of N=4 supersymmetric Yang--Mills theory
The finiteness properties of the N=4 supersymmetric Yang-Mills theory are
reanalyzed both in the component formulation and using N=1 superfields, in
order to discuss some subtleties that emerge in the computation of gauge
dependent quantities. The one-loop corrections to various Green functions of
elementary fields are calculated. In the component formulation it is shown that
the choice of the Wess-Zumino gauge, that is standard in supersymmetric gauge
theories, introduces ultraviolet divergences in the propagators at the one-loop
level. Such divergences are exactly cancelled when the contributions of the
fields that are put to zero in the Wess-Zumino gauge are taken into account. In
the description in terms of N=1 superfields infrared divergences are found for
every choice of gauge different from the supersymmetric generalization of the
Fermi-Feynman gauge. Two-, three- and four-point functions of N=1 superfields
are computed and some general features of the infrared problem are discussed.
We also examine the effect of the introduction of mass terms for the (anti)
chiral superfields in the theory, which break supersymmetry from N=4 to N=1. It
is shown that in the mass deformed model no ultraviolet divergences appear in
two-point functions. It argued that this result can be generalized to n-point
functions, supporting the proposal of a possible of use of this modified model
as a supersymmetry-preserving regularization scheme for N=1 theories.Comment: 41 pages, LaTeX2e, uses feynMP package to draw Feynman diagram
SL(2,Z) Multiplets in N=4 SYM Theory
We discuss the action of SL(2,Z) on local operators in D=4, N=4 SYM theory in
the superconformal phase. The modular property of the operator's scaling
dimension determines whether the operator transforms as a singlet, or
covariantly, as part of a finite or infinite dimensional multiplet under the
SL(2,Z) action. As an example, we argue that operators in the Konishi multiplet
transform as part of a (p,q) PSL(2,Z) multiplet. We also comment on the
non-perturbative local operators dual to the Konishi multiplet.Comment: 14 pages, harvmac; v2: published version with minor change
Simplifying one-loop amplitudes in superstring theory
We show that 4-point vector boson one-loop amplitudes, computed in ref.[1] in
the RNS formalism, around vacuum configurations with open unoriented strings,
preserving at least N=1 SUSY in D=4, satisfy the correct supersymmetry Ward
identities, in that they vanish for non MHV configurations (++++) and (-+++).
In the MHV case (--++) we drastically simplify their expressions. We then study
factorisation and the limiting IR and UV behaviour and find some unexpected
results. In particular no massless poles are exposed at generic values of the
modular parameter. Relying on the supersymmetric properties of our bosonic
amplitudes, we extend them to manifestly supersymmetric super-amplitudes and
compare our results with those obtained in the D=4 hybrid formalism, pointing
out difficulties in reconciling the two approaches for contributions from N=1,2
sectors.Comment: 38 pages plus appendice
Massive higher spins and holography
We review recent progress towards the understanding of higher spin gauge
symmetry breaking in AdS space from a holographic vantage point. According to
the AdS/CFT correspondence, N=4 SYM theory at vanishing coupling constant
should be dual to a theory in AdS which exhibits higher spin gauge symmetry
enhancement. When the SYM coupling is non-zero, all but a handful of HS
currents are violated by anomalies, and correspondingly local higher spin
symmetry in the bulk gets spontaneously broken. In agreement with previous
results and holographic expectations, we find that, barring one notable
exception (spin 1 eating spin 0), the Goldstone modes responsible for HS
symmetry breaking in AdS have non-vanishing mass even in the limit in which the
gauge symmetry is restored. We show that spontaneous breaking a' la
Stueckelberg implies that the mass of the relevant spin s'=s-1 Goldstone field
is exactly the one predicted by the correspondence.Comment: 8 pages, talk presented by M.B. at the "Fourth Meeting on Constrained
Dynamics and Quantum gravity" held in Cala Gonone (Sardinia, Italy),
September 12-16, 200
Using simple elastic bands to explain quantum mechanics: a conceptual review of two of Aert's machine-models
From the beginning of his research, the Belgian physicist Diederik Aerts has
shown great creativity in inventing a number of concrete machine-models that
have played an important role in the development of general mathematical and
conceptual formalisms for the description of the physical reality. These models
can also be used to demystify much of the strangeness in the behavior of
quantum entities, by allowing to have a peek at what's going on - in structural
terms - behind the "quantum scenes," during a measurement. In this author's
view, the importance of these machine-models, and of the approaches they have
originated, have been so far seriously underappreciated by the physics
community, despite their success in clarifying many challenges of quantum
physics. To fill this gap, and encourage a greater number of researchers to
take cognizance of the important work of so-called Geneva-Brussels school, we
describe and analyze in this paper two of Aerts' historical machine-models,
whose operations are based on simple breakable elastic bands. The first one,
called the spin quantum-machine, is able to replicate the quantum probabilities
associated with the spin measurement of a spin-1/2 entity. The second one,
called the \emph{connected vessels of water model} (of which we shall present
here an alternative version based on elastics) is able to violate Bell's
inequality, as coincidence measurements on entangled states can do.Comment: 15 pages, 5 figure
Galaxy Evolution in Local Group Analogs. I. A GALEX study of nearby groups
Understanding the astrophysical processes acting within galaxy groups and
their effects on the evolution of the galaxy population is one of the crucial
topic of modern cosmology, as almost 60% of galaxies in the Local Universe are
found in groups. We imaged in the far (FUV 1539 A) and near ultraviolet (NUV
2316 A) with GALEX three nearby groups, namely LGG93, LGG127 and LGG225. We
obtained the UV galaxy surface photometry and, for LGG225, the only group
covered by the SDSS, the photometry in u, g, r, i, z bands. We discuss galaxy
morphologies looking for interaction signatures and we analyze the SED of
galaxies to infer their luminosity-weighted ages. The UV and optical photometry
was also used to perform a kinematical and dynamical analysis of each group and
to evaluate the stellar mass. A few member galaxies in LGG225 show a distorted
UV morphology due to ongoing interactions. (FUV-NUV) colors suggest that
spirals in LGG93 and LGG225 host stellar populations in their outskirts younger
than that of M31 and M33 in the LG or with less extinction. The irregular
interacting galaxy NGC3447A has a significantly younger stellar population (few
Myr old) than the average of the other irregular galaxies in LGG225 suggesting
that the encounter triggered star formation. The early-type members of LGG225,
NGC3457 and NGC3522, have masses of the order of a few 10^9 Mo, comparable to
the Local Group ellipticals. For the most massive spiral in LGG225, we estimate
a stellar mass of ~4x10 Mo, comparable to M33 in the LG. Ages of stellar
populations range from a few to ~7 Gyr for the galaxies in LGG225. The
kinematical and dynamical analysis indicates that LGG127 and LGG225 are in a
pre-virial collapse phase, i.e. still undergoing dynamical relaxation, while
LGG93 is likely virialized. (Abridged)Comment: 20 pages, 13 figures, accepted for publication in Astronomy and
Astrophysic
Glueball Scattering Amplitudes from Holography
Using techniques developed in a previous paper three-point functions in field
theories described by holographic renormalization group flows are computed. We
consider a system of one active scalar and one inert scalar coupled to gravity.
For the GPPZ flow, their dual operators create states that are interpreted as
glueballs of the N=1 SYM theory, which lies at the infrared end of the
renormalization group flow. The scattering amplitudes for three-glueball
processes are calculated providing precise predictions for glueball decays in
N=1 SYM theory. Numerical results for low-lying glueballs are included.Comment: 34 pages v2: comments on local terms and references added, v3:
version published in JHE
- …