5 research outputs found

    Assessing Variability of EEG and ECG/HRV Time Series Signals Using a Variety of Non-Linear Methods

    Get PDF
    Time series signals, such as Electroencephalogram (EEG) and Electrocardiogram (ECG) represent the complex dynamic behaviours of biological systems. The analysis of these signals using variety of nonlinear methods is essential for understanding variability within EEG and ECG, which potentially could help unveiling hidden patterns related to underlying physiological mechanisms. EEG is a time varying signal, and electrodes for recording EEG at different positions on the scalp give different time varying signals. There might be correlation between these signals. It is important to know the correlation between EEG signals because it might tell whether or not brain activities from different areas are related. EEG and ECG might be related to each other because both of them are generated from one co-ordinately working body. Investigating this relationship is of interest because it may reveal information about the correlation between EEG and ECG signals. This thesis is about assessing variability of time series data, EEG and ECG, using variety of nonlinear measures. Although other research has looked into the correlation between EEGs using a limited number of electrodes and a limited number of combinations of electrode pairs, no research has investigated the correlation between EEG signals and distance between electrodes. Furthermore, no one has compared the correlation performance for participants with and without medical conditions. In my research, I have filled up these gaps by using a full range of electrodes and all possible combinations of electrode pairs analysed in Time Domain (TD). Cross-Correlation method is calculated on the processed EEG signals for different number unique electrode pairs from each datasets. In order to obtain the distance in centimetres (cm) between electrodes, a measuring tape was used. For most of our participants the head circumference range was 54-58cm, for which a medium-sized I have discovered that the correlation between EEG signals measured through electrodes is linearly dependent on the physical distance (straight-line) distance between them for datasets without medical condition, but not for datasets with medical conditions. Some research has investigated correlation between EEG and Heart Rate Variability (HRV) within limited brain areas and demonstrated the existence of correlation between EEG and HRV. But no research has indicated whether or not the correlation changes with brain area. Although Wavelet Transformations (WT) have been performed on time series data including EEG and HRV signals to extract certain features respectively by other research, so far correlation between WT signals of EEG and HRV has not been analysed. My research covers these gaps by conducting a thorough investigation of all electrodes on the human scalp in Frequency Domain (FD) as well as TD. For the reason of different sample rates of EEG and HRV, two different approaches (named as Method 1 and Method 2) are utilised to segment EEG signals and to calculate Pearson’s Correlation Coefficient for each of the EEG frequencies with each of the HRV frequencies in FD. I have demonstrated that EEG at the front area of the brain has a stronger correlation with HRV than that at the other area in a frequency domain. These findings are independent of both participants and brain hemispheres. Sample Entropy (SE) is used to predict complexity of time series data. Recent research has proposed new calculation methods for SE, aiming to improve the accuracy. To my knowledge, no one has attempted to reduce the computational time of SE calculation. I have developed a new calculation method for time series complexity which could improve computational time significantly in the context of calculating a correlation between EEG and HRV. The results have a parsimonious outcome of SE calculation by exploiting a new method of SE implementation. In addition, it is found that the electrical activity in the frontal lobe of the brain appears to be correlated with the HRV in a time domain. Time series analysis method has been utilised to study complex systems that appear ubiquitous in nature, but limited to certain dynamic systems (e.g. analysing variables affecting stock values). In this thesis, I have also investigated the nature of the dynamic system of HRV. I have disclosed that Embedding Dimension could unveil two variables that determined HRV

    An Investigation of How Wavelet Transform can Affect the Correlation Performance of Biomedical Signals : The Correlation of EEG and HRV Frequency Bands in the frontal lobe of the brain

    Get PDF
    © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reservedRecently, the correlation between biomedical signals, such as electroencephalograms (EEG) and electrocardiograms (ECG) time series signals, has been analysed using the Pearson Correlation method. Although Wavelet Transformations (WT) have been performed on time series data including EEG and ECG signals, so far the correlation between WT signals has not been analysed. This research shows the correlation between the EEG and HRV, with and without WT signals. Our results suggest electrical activity in the frontal lobe of the brain is best correlated with the HRV.We assume this is because the frontal lobe is related to higher mental functions of the cerebral cortex and responsible for muscle movements of the body. Our results indicate a positive correlation between Delta, Alpha and Beta frequencies of EEG at both low frequency (LF) and high frequency (HF) of HRV. This finding is independent of both participants and brain hemisphere.Final Published versio

    Efficient Methods for Calculating Sample Entropy in Time Series Data Analysis

    Get PDF
    Recently, different algorithms have been suggested to improve Sample Entropy (SE) performance. Although new methods for calculating SE have been proposed, so far improving the efficiency (computational time) of SE calculation methods has not been considered. This research shows such an analysis of calculating a correlation between Electroencephalogram(EEG) and Heart Rate Variability(HRV) based on their SE values. Our results indicate that the parsimonious outcome of SE calculation can be achieved by exploiting a new method of SE implementation. In addition, it is found that the electrical activity in the frontal lobe of the brain appears to be correlated with the HRV in a time domain.Peer reviewe

    Changes in finger temperature and blood flow in response to different frequencies of transcutaneous electroacupuncture at LI4 (hegu)

    Get PDF
    © 2015 David Mayor, Tony Steffert and Ronakben Bhavsar.Background. Finger blood flow and temperature are often used as indices of autonomic (sympathetic) function. Transcutaneous electroacupuncture (TEA) is an increasingly used variant of electroacupuncture (EA). This is the fifth in a series of conference posters from a study investigating the effects of EA and TEA on heart/pulse rate variability (HRV/PRV), the electroencephalograph (EEG), and now blood flow.Peer reviewe

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care
    corecore